MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exbidh Structured version   Visualization version   GIF version

Theorem exbidh 1791
Description: Formula-building rule for existential quantifier (deduction rule). (Contributed by NM, 26-May-1993.)
Hypotheses
Ref Expression
exbidh.1 (𝜑 → ∀𝑥𝜑)
exbidh.2 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
exbidh (𝜑 → (∃𝑥𝜓 ↔ ∃𝑥𝜒))

Proof of Theorem exbidh
StepHypRef Expression
1 exbidh.1 . 2 (𝜑 → ∀𝑥𝜑)
2 exbidh.2 . . 3 (𝜑 → (𝜓𝜒))
32alexbii 1757 . 2 (∀𝑥𝜑 → (∃𝑥𝜓 ↔ ∃𝑥𝜒))
41, 3syl 17 1 (𝜑 → (∃𝑥𝜓 ↔ ∃𝑥𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wal 1478  wex 1701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734
This theorem depends on definitions:  df-bi 197  df-ex 1702
This theorem is referenced by:  exbidv  1847  exbid  2089  exbidOLD  2199  drex2  2327  ac6s6  33651
  Copyright terms: Public domain W3C validator