![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > excom | Structured version Visualization version GIF version |
Description: Theorem 19.11 of [Margaris] p. 89. (Contributed by NM, 5-Aug-1993.) Remove dependencies on ax-5 1879, ax-6 1945, ax-7 1981, ax-10 2059, ax-12 2087. (Revised by Wolf Lammen, 8-Jan-2018.) (Proof shortened by Wolf Lammen, 22-Aug-2020.) |
Ref | Expression |
---|---|
excom | ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑦∃𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alcom 2077 | . . 3 ⊢ (∀𝑥∀𝑦 ¬ 𝜑 ↔ ∀𝑦∀𝑥 ¬ 𝜑) | |
2 | 1 | notbii 309 | . 2 ⊢ (¬ ∀𝑥∀𝑦 ¬ 𝜑 ↔ ¬ ∀𝑦∀𝑥 ¬ 𝜑) |
3 | 2exnaln 1796 | . 2 ⊢ (∃𝑥∃𝑦𝜑 ↔ ¬ ∀𝑥∀𝑦 ¬ 𝜑) | |
4 | 2exnaln 1796 | . 2 ⊢ (∃𝑦∃𝑥𝜑 ↔ ¬ ∀𝑦∀𝑥 ¬ 𝜑) | |
5 | 2, 3, 4 | 3bitr4i 292 | 1 ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑦∃𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 196 ∀wal 1521 ∃wex 1744 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-11 2074 |
This theorem depends on definitions: df-bi 197 df-ex 1745 |
This theorem is referenced by: excomim 2083 excom13 2084 exrot3 2085 ee4anv 2220 sbel2x 2487 2sb8e 2495 2euex 2573 2eu4 2585 rexcomf 3126 gencbvex 3281 euind 3426 sbccomlem 3541 opelopabsbALT 5013 elvvv 5212 dmuni 5366 dm0rn0 5374 dmcosseq 5419 elres 5470 rnco 5679 coass 5692 oprabid 6717 dfoprab2 6743 uniuni 7013 opabex3d 7187 opabex3 7188 frxp 7332 domen 8010 xpassen 8095 scott0 8787 dfac5lem1 8984 dfac5lem4 8987 cflem 9106 ltexprlem1 9896 ltexprlem4 9899 fsumcom2 14549 fsumcom2OLD 14550 fprodcom2 14758 fprodcom2OLD 14759 gsumval3eu 18351 dprd2d2 18489 cnvoprabOLD 29626 eldm3 31777 dfdm5 31800 dfrn5 31801 elfuns 32147 dfiota3 32155 brimg 32169 funpartlem 32174 bj-rexcom4 32994 bj-restuni 33175 sbccom2lem 34059 diblsmopel 36777 dicelval3 36786 dihjatcclem4 37027 pm11.6 38909 ax6e2ndeq 39092 e2ebind 39096 ax6e2ndeqVD 39459 e2ebindVD 39462 e2ebindALT 39479 ax6e2ndeqALT 39481 elsprel 42050 eliunxp2 42437 |
Copyright terms: Public domain | W3C validator |