MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  excxor Structured version   Visualization version   GIF version

Theorem excxor 1467
Description: This tautology shows that xor is really exclusive. (Contributed by FL, 22-Nov-2010.)
Assertion
Ref Expression
excxor ((𝜑𝜓) ↔ ((𝜑 ∧ ¬ 𝜓) ∨ (¬ 𝜑𝜓)))

Proof of Theorem excxor
StepHypRef Expression
1 df-xor 1463 . 2 ((𝜑𝜓) ↔ ¬ (𝜑𝜓))
2 xor 934 . 2 (¬ (𝜑𝜓) ↔ ((𝜑 ∧ ¬ 𝜓) ∨ (𝜓 ∧ ¬ 𝜑)))
3 ancom 466 . . 3 ((𝜓 ∧ ¬ 𝜑) ↔ (¬ 𝜑𝜓))
43orbi2i 541 . 2 (((𝜑 ∧ ¬ 𝜓) ∨ (𝜓 ∧ ¬ 𝜑)) ↔ ((𝜑 ∧ ¬ 𝜓) ∨ (¬ 𝜑𝜓)))
51, 2, 43bitri 286 1 ((𝜑𝜓) ↔ ((𝜑 ∧ ¬ 𝜓) ∨ (¬ 𝜑𝜓)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 196  wo 383  wa 384  wxo 1462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-xor 1463
This theorem is referenced by:  f1omvdco2  17849  psgnunilem5  17895  or3or  38139
  Copyright terms: Public domain W3C validator