Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  exidu1 Structured version   Visualization version   GIF version

Theorem exidu1 33322
Description: Unicity of the left and right identity element of a magma when it exists. (Contributed by FL, 12-Dec-2009.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
exidu1.1 𝑋 = ran 𝐺
Assertion
Ref Expression
exidu1 (𝐺 ∈ (Magma ∩ ExId ) → ∃!𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥))
Distinct variable groups:   𝑢,𝐺,𝑥   𝑢,𝑋,𝑥

Proof of Theorem exidu1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 exidu1.1 . . 3 𝑋 = ran 𝐺
21isexid2 33321 . 2 (𝐺 ∈ (Magma ∩ ExId ) → ∃𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥))
3 simpl 473 . . . . . . . 8 (((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) → (𝑢𝐺𝑥) = 𝑥)
43ralimi 2947 . . . . . . 7 (∀𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) → ∀𝑥𝑋 (𝑢𝐺𝑥) = 𝑥)
5 oveq2 6618 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑢𝐺𝑥) = (𝑢𝐺𝑦))
6 id 22 . . . . . . . . 9 (𝑥 = 𝑦𝑥 = 𝑦)
75, 6eqeq12d 2636 . . . . . . . 8 (𝑥 = 𝑦 → ((𝑢𝐺𝑥) = 𝑥 ↔ (𝑢𝐺𝑦) = 𝑦))
87rspcv 3294 . . . . . . 7 (𝑦𝑋 → (∀𝑥𝑋 (𝑢𝐺𝑥) = 𝑥 → (𝑢𝐺𝑦) = 𝑦))
94, 8syl5 34 . . . . . 6 (𝑦𝑋 → (∀𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) → (𝑢𝐺𝑦) = 𝑦))
10 simpr 477 . . . . . . . 8 (((𝑦𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑦) = 𝑥) → (𝑥𝐺𝑦) = 𝑥)
1110ralimi 2947 . . . . . . 7 (∀𝑥𝑋 ((𝑦𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑦) = 𝑥) → ∀𝑥𝑋 (𝑥𝐺𝑦) = 𝑥)
12 oveq1 6617 . . . . . . . . 9 (𝑥 = 𝑢 → (𝑥𝐺𝑦) = (𝑢𝐺𝑦))
13 id 22 . . . . . . . . 9 (𝑥 = 𝑢𝑥 = 𝑢)
1412, 13eqeq12d 2636 . . . . . . . 8 (𝑥 = 𝑢 → ((𝑥𝐺𝑦) = 𝑥 ↔ (𝑢𝐺𝑦) = 𝑢))
1514rspcv 3294 . . . . . . 7 (𝑢𝑋 → (∀𝑥𝑋 (𝑥𝐺𝑦) = 𝑥 → (𝑢𝐺𝑦) = 𝑢))
1611, 15syl5 34 . . . . . 6 (𝑢𝑋 → (∀𝑥𝑋 ((𝑦𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑦) = 𝑥) → (𝑢𝐺𝑦) = 𝑢))
179, 16im2anan9r 880 . . . . 5 ((𝑢𝑋𝑦𝑋) → ((∀𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ∧ ∀𝑥𝑋 ((𝑦𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑦) = 𝑥)) → ((𝑢𝐺𝑦) = 𝑦 ∧ (𝑢𝐺𝑦) = 𝑢)))
18 eqtr2 2641 . . . . . 6 (((𝑢𝐺𝑦) = 𝑦 ∧ (𝑢𝐺𝑦) = 𝑢) → 𝑦 = 𝑢)
1918eqcomd 2627 . . . . 5 (((𝑢𝐺𝑦) = 𝑦 ∧ (𝑢𝐺𝑦) = 𝑢) → 𝑢 = 𝑦)
2017, 19syl6 35 . . . 4 ((𝑢𝑋𝑦𝑋) → ((∀𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ∧ ∀𝑥𝑋 ((𝑦𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑦) = 𝑥)) → 𝑢 = 𝑦))
2120rgen2a 2972 . . 3 𝑢𝑋𝑦𝑋 ((∀𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ∧ ∀𝑥𝑋 ((𝑦𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑦) = 𝑥)) → 𝑢 = 𝑦)
2221a1i 11 . 2 (𝐺 ∈ (Magma ∩ ExId ) → ∀𝑢𝑋𝑦𝑋 ((∀𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ∧ ∀𝑥𝑋 ((𝑦𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑦) = 𝑥)) → 𝑢 = 𝑦))
23 oveq1 6617 . . . . . 6 (𝑢 = 𝑦 → (𝑢𝐺𝑥) = (𝑦𝐺𝑥))
2423eqeq1d 2623 . . . . 5 (𝑢 = 𝑦 → ((𝑢𝐺𝑥) = 𝑥 ↔ (𝑦𝐺𝑥) = 𝑥))
25 oveq2 6618 . . . . . 6 (𝑢 = 𝑦 → (𝑥𝐺𝑢) = (𝑥𝐺𝑦))
2625eqeq1d 2623 . . . . 5 (𝑢 = 𝑦 → ((𝑥𝐺𝑢) = 𝑥 ↔ (𝑥𝐺𝑦) = 𝑥))
2724, 26anbi12d 746 . . . 4 (𝑢 = 𝑦 → (((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ↔ ((𝑦𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑦) = 𝑥)))
2827ralbidv 2981 . . 3 (𝑢 = 𝑦 → (∀𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ↔ ∀𝑥𝑋 ((𝑦𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑦) = 𝑥)))
2928reu4 3386 . 2 (∃!𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ↔ (∃𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ∧ ∀𝑢𝑋𝑦𝑋 ((∀𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ∧ ∀𝑥𝑋 ((𝑦𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑦) = 𝑥)) → 𝑢 = 𝑦)))
302, 22, 29sylanbrc 697 1 (𝐺 ∈ (Magma ∩ ExId ) → ∃!𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987  wral 2907  wrex 2908  ∃!wreu 2909  cin 3558  ran crn 5080  (class class class)co 6610   ExId cexid 33310  Magmacmagm 33314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pr 4872  ax-un 6909
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-nul 3897  df-if 4064  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-id 4994  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-fo 5858  df-fv 5860  df-ov 6613  df-exid 33311  df-mgmOLD 33315
This theorem is referenced by:  iorlid  33324  cmpidelt  33325  exidresid  33345
  Copyright terms: Public domain W3C validator