MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eximal Structured version   Visualization version   GIF version

Theorem eximal 1779
Description: An equivalence between an implication with an existentially quantified antecedent and an implication with a universally quantified consequent. An interesting case is when the same formula is substituted for both 𝜑 and 𝜓, since then both implications express a type of non-freeness. See also alimex 1827. (Contributed by BJ, 12-May-2019.)
Assertion
Ref Expression
eximal ((∃𝑥𝜑𝜓) ↔ (¬ 𝜓 → ∀𝑥 ¬ 𝜑))

Proof of Theorem eximal
StepHypRef Expression
1 df-ex 1777 . . 3 (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑)
21imbi1i 352 . 2 ((∃𝑥𝜑𝜓) ↔ (¬ ∀𝑥 ¬ 𝜑𝜓))
3 con1b 361 . 2 ((¬ ∀𝑥 ¬ 𝜑𝜓) ↔ (¬ 𝜓 → ∀𝑥 ¬ 𝜑))
42, 3bitri 277 1 ((∃𝑥𝜑𝜓) ↔ (¬ 𝜓 → ∀𝑥 ¬ 𝜑))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wal 1531  wex 1776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 209  df-ex 1777
This theorem is referenced by:  ax5e  1909  axc16nf  2260  xfree2  30221  bj-exalims  33967  bj-dfnnf2  34066  bj-nnfnt  34069
  Copyright terms: Public domain W3C validator