Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  exlimihOLD Structured version   Visualization version   GIF version

Theorem exlimihOLD 2220
 Description: Obsolete proof of exlimih 2146 as of 6-Oct-2021. (Contributed by NM, 10-Jan-1993.) (Proof shortened by Andrew Salmon, 13-May-2011.) (Proof shortened by Wolf Lammen, 1-Jan-2018.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
exlimihOLD.1 (𝜓 → ∀𝑥𝜓)
exlimihOLD.2 (𝜑𝜓)
Assertion
Ref Expression
exlimihOLD (∃𝑥𝜑𝜓)

Proof of Theorem exlimihOLD
StepHypRef Expression
1 exlimihOLD.1 . . 3 (𝜓 → ∀𝑥𝜓)
21nfiOLD 1732 . 2 𝑥𝜓
3 exlimihOLD.2 . 2 (𝜑𝜓)
42, 3exlimiOLD 2219 1 (∃𝑥𝜑𝜓)
 Colors of variables: wff setvar class Syntax hints:   → wi 4  ∀wal 1479  ∃wex 1702 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-10 2017  ax-12 2045 This theorem depends on definitions:  df-bi 197  df-or 385  df-ex 1703  df-nf 1708  df-nfOLD 1719 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator