MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expcl2lem Structured version   Visualization version   GIF version

Theorem expcl2lem 12812
Description: Lemma for proving integer exponentiation closure laws. (Contributed by Mario Carneiro, 4-Jun-2014.) (Revised by Mario Carneiro, 9-Sep-2014.)
Hypotheses
Ref Expression
expcllem.1 𝐹 ⊆ ℂ
expcllem.2 ((𝑥𝐹𝑦𝐹) → (𝑥 · 𝑦) ∈ 𝐹)
expcllem.3 1 ∈ 𝐹
expcl2lem.4 ((𝑥𝐹𝑥 ≠ 0) → (1 / 𝑥) ∈ 𝐹)
Assertion
Ref Expression
expcl2lem ((𝐴𝐹𝐴 ≠ 0 ∧ 𝐵 ∈ ℤ) → (𝐴𝐵) ∈ 𝐹)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵   𝑥,𝐹,𝑦
Allowed substitution hint:   𝐵(𝑦)

Proof of Theorem expcl2lem
StepHypRef Expression
1 elznn0nn 11335 . . 3 (𝐵 ∈ ℤ ↔ (𝐵 ∈ ℕ0 ∨ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)))
2 expcllem.1 . . . . . . 7 𝐹 ⊆ ℂ
3 expcllem.2 . . . . . . 7 ((𝑥𝐹𝑦𝐹) → (𝑥 · 𝑦) ∈ 𝐹)
4 expcllem.3 . . . . . . 7 1 ∈ 𝐹
52, 3, 4expcllem 12811 . . . . . 6 ((𝐴𝐹𝐵 ∈ ℕ0) → (𝐴𝐵) ∈ 𝐹)
65ex 450 . . . . 5 (𝐴𝐹 → (𝐵 ∈ ℕ0 → (𝐴𝐵) ∈ 𝐹))
76adantr 481 . . . 4 ((𝐴𝐹𝐴 ≠ 0) → (𝐵 ∈ ℕ0 → (𝐴𝐵) ∈ 𝐹))
8 simpll 789 . . . . . . . 8 (((𝐴𝐹𝐴 ≠ 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → 𝐴𝐹)
92, 8sseldi 3581 . . . . . . 7 (((𝐴𝐹𝐴 ≠ 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → 𝐴 ∈ ℂ)
10 simprl 793 . . . . . . . 8 (((𝐴𝐹𝐴 ≠ 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → 𝐵 ∈ ℝ)
1110recnd 10012 . . . . . . 7 (((𝐴𝐹𝐴 ≠ 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → 𝐵 ∈ ℂ)
12 nnnn0 11243 . . . . . . . 8 (-𝐵 ∈ ℕ → -𝐵 ∈ ℕ0)
1312ad2antll 764 . . . . . . 7 (((𝐴𝐹𝐴 ≠ 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → -𝐵 ∈ ℕ0)
14 expneg2 12809 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ -𝐵 ∈ ℕ0) → (𝐴𝐵) = (1 / (𝐴↑-𝐵)))
159, 11, 13, 14syl3anc 1323 . . . . . 6 (((𝐴𝐹𝐴 ≠ 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → (𝐴𝐵) = (1 / (𝐴↑-𝐵)))
16 difss 3715 . . . . . . . 8 (𝐹 ∖ {0}) ⊆ 𝐹
17 simpl 473 . . . . . . . . . 10 (((𝐴𝐹𝐴 ≠ 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → (𝐴𝐹𝐴 ≠ 0))
18 eldifsn 4287 . . . . . . . . . 10 (𝐴 ∈ (𝐹 ∖ {0}) ↔ (𝐴𝐹𝐴 ≠ 0))
1917, 18sylibr 224 . . . . . . . . 9 (((𝐴𝐹𝐴 ≠ 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → 𝐴 ∈ (𝐹 ∖ {0}))
2016, 2sstri 3592 . . . . . . . . . 10 (𝐹 ∖ {0}) ⊆ ℂ
2116sseli 3579 . . . . . . . . . . . 12 (𝑥 ∈ (𝐹 ∖ {0}) → 𝑥𝐹)
2216sseli 3579 . . . . . . . . . . . 12 (𝑦 ∈ (𝐹 ∖ {0}) → 𝑦𝐹)
2321, 22, 3syl2an 494 . . . . . . . . . . 11 ((𝑥 ∈ (𝐹 ∖ {0}) ∧ 𝑦 ∈ (𝐹 ∖ {0})) → (𝑥 · 𝑦) ∈ 𝐹)
24 eldifsn 4287 . . . . . . . . . . . . 13 (𝑥 ∈ (𝐹 ∖ {0}) ↔ (𝑥𝐹𝑥 ≠ 0))
252sseli 3579 . . . . . . . . . . . . . 14 (𝑥𝐹𝑥 ∈ ℂ)
2625anim1i 591 . . . . . . . . . . . . 13 ((𝑥𝐹𝑥 ≠ 0) → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
2724, 26sylbi 207 . . . . . . . . . . . 12 (𝑥 ∈ (𝐹 ∖ {0}) → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
28 eldifsn 4287 . . . . . . . . . . . . 13 (𝑦 ∈ (𝐹 ∖ {0}) ↔ (𝑦𝐹𝑦 ≠ 0))
292sseli 3579 . . . . . . . . . . . . . 14 (𝑦𝐹𝑦 ∈ ℂ)
3029anim1i 591 . . . . . . . . . . . . 13 ((𝑦𝐹𝑦 ≠ 0) → (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0))
3128, 30sylbi 207 . . . . . . . . . . . 12 (𝑦 ∈ (𝐹 ∖ {0}) → (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0))
32 mulne0 10613 . . . . . . . . . . . 12 (((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0)) → (𝑥 · 𝑦) ≠ 0)
3327, 31, 32syl2an 494 . . . . . . . . . . 11 ((𝑥 ∈ (𝐹 ∖ {0}) ∧ 𝑦 ∈ (𝐹 ∖ {0})) → (𝑥 · 𝑦) ≠ 0)
34 eldifsn 4287 . . . . . . . . . . 11 ((𝑥 · 𝑦) ∈ (𝐹 ∖ {0}) ↔ ((𝑥 · 𝑦) ∈ 𝐹 ∧ (𝑥 · 𝑦) ≠ 0))
3523, 33, 34sylanbrc 697 . . . . . . . . . 10 ((𝑥 ∈ (𝐹 ∖ {0}) ∧ 𝑦 ∈ (𝐹 ∖ {0})) → (𝑥 · 𝑦) ∈ (𝐹 ∖ {0}))
36 ax-1ne0 9949 . . . . . . . . . . 11 1 ≠ 0
37 eldifsn 4287 . . . . . . . . . . 11 (1 ∈ (𝐹 ∖ {0}) ↔ (1 ∈ 𝐹 ∧ 1 ≠ 0))
384, 36, 37mpbir2an 954 . . . . . . . . . 10 1 ∈ (𝐹 ∖ {0})
3920, 35, 38expcllem 12811 . . . . . . . . 9 ((𝐴 ∈ (𝐹 ∖ {0}) ∧ -𝐵 ∈ ℕ0) → (𝐴↑-𝐵) ∈ (𝐹 ∖ {0}))
4019, 13, 39syl2anc 692 . . . . . . . 8 (((𝐴𝐹𝐴 ≠ 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → (𝐴↑-𝐵) ∈ (𝐹 ∖ {0}))
4116, 40sseldi 3581 . . . . . . 7 (((𝐴𝐹𝐴 ≠ 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → (𝐴↑-𝐵) ∈ 𝐹)
42 eldifsn 4287 . . . . . . . . 9 ((𝐴↑-𝐵) ∈ (𝐹 ∖ {0}) ↔ ((𝐴↑-𝐵) ∈ 𝐹 ∧ (𝐴↑-𝐵) ≠ 0))
4340, 42sylib 208 . . . . . . . 8 (((𝐴𝐹𝐴 ≠ 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → ((𝐴↑-𝐵) ∈ 𝐹 ∧ (𝐴↑-𝐵) ≠ 0))
4443simprd 479 . . . . . . 7 (((𝐴𝐹𝐴 ≠ 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → (𝐴↑-𝐵) ≠ 0)
45 neeq1 2852 . . . . . . . . 9 (𝑥 = (𝐴↑-𝐵) → (𝑥 ≠ 0 ↔ (𝐴↑-𝐵) ≠ 0))
46 oveq2 6612 . . . . . . . . . 10 (𝑥 = (𝐴↑-𝐵) → (1 / 𝑥) = (1 / (𝐴↑-𝐵)))
4746eleq1d 2683 . . . . . . . . 9 (𝑥 = (𝐴↑-𝐵) → ((1 / 𝑥) ∈ 𝐹 ↔ (1 / (𝐴↑-𝐵)) ∈ 𝐹))
4845, 47imbi12d 334 . . . . . . . 8 (𝑥 = (𝐴↑-𝐵) → ((𝑥 ≠ 0 → (1 / 𝑥) ∈ 𝐹) ↔ ((𝐴↑-𝐵) ≠ 0 → (1 / (𝐴↑-𝐵)) ∈ 𝐹)))
49 expcl2lem.4 . . . . . . . . 9 ((𝑥𝐹𝑥 ≠ 0) → (1 / 𝑥) ∈ 𝐹)
5049ex 450 . . . . . . . 8 (𝑥𝐹 → (𝑥 ≠ 0 → (1 / 𝑥) ∈ 𝐹))
5148, 50vtoclga 3258 . . . . . . 7 ((𝐴↑-𝐵) ∈ 𝐹 → ((𝐴↑-𝐵) ≠ 0 → (1 / (𝐴↑-𝐵)) ∈ 𝐹))
5241, 44, 51sylc 65 . . . . . 6 (((𝐴𝐹𝐴 ≠ 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → (1 / (𝐴↑-𝐵)) ∈ 𝐹)
5315, 52eqeltrd 2698 . . . . 5 (((𝐴𝐹𝐴 ≠ 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → (𝐴𝐵) ∈ 𝐹)
5453ex 450 . . . 4 ((𝐴𝐹𝐴 ≠ 0) → ((𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ) → (𝐴𝐵) ∈ 𝐹))
557, 54jaod 395 . . 3 ((𝐴𝐹𝐴 ≠ 0) → ((𝐵 ∈ ℕ0 ∨ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → (𝐴𝐵) ∈ 𝐹))
561, 55syl5bi 232 . 2 ((𝐴𝐹𝐴 ≠ 0) → (𝐵 ∈ ℤ → (𝐴𝐵) ∈ 𝐹))
57563impia 1258 1 ((𝐴𝐹𝐴 ≠ 0 ∧ 𝐵 ∈ ℤ) → (𝐴𝐵) ∈ 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 383  wa 384  w3a 1036   = wceq 1480  wcel 1987  wne 2790  cdif 3552  wss 3555  {csn 4148  (class class class)co 6604  cc 9878  cr 9879  0cc0 9880  1c1 9881   · cmul 9885  -cneg 10211   / cdiv 10628  cn 10964  0cn0 11236  cz 11321  cexp 12800
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-n0 11237  df-z 11322  df-uz 11632  df-seq 12742  df-exp 12801
This theorem is referenced by:  rpexpcl  12819  reexpclz  12820  qexpclz  12821  m1expcl2  12822  expclzlem  12824  1exp  12829
  Copyright terms: Public domain W3C validator