Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  expcl2lem Structured version   Visualization version   GIF version

Theorem expcl2lem 13086
 Description: Lemma for proving integer exponentiation closure laws. (Contributed by Mario Carneiro, 4-Jun-2014.) (Revised by Mario Carneiro, 9-Sep-2014.)
Hypotheses
Ref Expression
expcllem.1 𝐹 ⊆ ℂ
expcllem.2 ((𝑥𝐹𝑦𝐹) → (𝑥 · 𝑦) ∈ 𝐹)
expcllem.3 1 ∈ 𝐹
expcl2lem.4 ((𝑥𝐹𝑥 ≠ 0) → (1 / 𝑥) ∈ 𝐹)
Assertion
Ref Expression
expcl2lem ((𝐴𝐹𝐴 ≠ 0 ∧ 𝐵 ∈ ℤ) → (𝐴𝐵) ∈ 𝐹)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵   𝑥,𝐹,𝑦
Allowed substitution hint:   𝐵(𝑦)

Proof of Theorem expcl2lem
StepHypRef Expression
1 elznn0nn 11603 . . 3 (𝐵 ∈ ℤ ↔ (𝐵 ∈ ℕ0 ∨ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)))
2 expcllem.1 . . . . . . 7 𝐹 ⊆ ℂ
3 expcllem.2 . . . . . . 7 ((𝑥𝐹𝑦𝐹) → (𝑥 · 𝑦) ∈ 𝐹)
4 expcllem.3 . . . . . . 7 1 ∈ 𝐹
52, 3, 4expcllem 13085 . . . . . 6 ((𝐴𝐹𝐵 ∈ ℕ0) → (𝐴𝐵) ∈ 𝐹)
65ex 449 . . . . 5 (𝐴𝐹 → (𝐵 ∈ ℕ0 → (𝐴𝐵) ∈ 𝐹))
76adantr 472 . . . 4 ((𝐴𝐹𝐴 ≠ 0) → (𝐵 ∈ ℕ0 → (𝐴𝐵) ∈ 𝐹))
8 simpll 807 . . . . . . . 8 (((𝐴𝐹𝐴 ≠ 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → 𝐴𝐹)
92, 8sseldi 3742 . . . . . . 7 (((𝐴𝐹𝐴 ≠ 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → 𝐴 ∈ ℂ)
10 simprl 811 . . . . . . . 8 (((𝐴𝐹𝐴 ≠ 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → 𝐵 ∈ ℝ)
1110recnd 10280 . . . . . . 7 (((𝐴𝐹𝐴 ≠ 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → 𝐵 ∈ ℂ)
12 nnnn0 11511 . . . . . . . 8 (-𝐵 ∈ ℕ → -𝐵 ∈ ℕ0)
1312ad2antll 767 . . . . . . 7 (((𝐴𝐹𝐴 ≠ 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → -𝐵 ∈ ℕ0)
14 expneg2 13083 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ -𝐵 ∈ ℕ0) → (𝐴𝐵) = (1 / (𝐴↑-𝐵)))
159, 11, 13, 14syl3anc 1477 . . . . . 6 (((𝐴𝐹𝐴 ≠ 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → (𝐴𝐵) = (1 / (𝐴↑-𝐵)))
16 difss 3880 . . . . . . . 8 (𝐹 ∖ {0}) ⊆ 𝐹
17 simpl 474 . . . . . . . . . 10 (((𝐴𝐹𝐴 ≠ 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → (𝐴𝐹𝐴 ≠ 0))
18 eldifsn 4462 . . . . . . . . . 10 (𝐴 ∈ (𝐹 ∖ {0}) ↔ (𝐴𝐹𝐴 ≠ 0))
1917, 18sylibr 224 . . . . . . . . 9 (((𝐴𝐹𝐴 ≠ 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → 𝐴 ∈ (𝐹 ∖ {0}))
2016, 2sstri 3753 . . . . . . . . . 10 (𝐹 ∖ {0}) ⊆ ℂ
2116sseli 3740 . . . . . . . . . . . 12 (𝑥 ∈ (𝐹 ∖ {0}) → 𝑥𝐹)
2216sseli 3740 . . . . . . . . . . . 12 (𝑦 ∈ (𝐹 ∖ {0}) → 𝑦𝐹)
2321, 22, 3syl2an 495 . . . . . . . . . . 11 ((𝑥 ∈ (𝐹 ∖ {0}) ∧ 𝑦 ∈ (𝐹 ∖ {0})) → (𝑥 · 𝑦) ∈ 𝐹)
24 eldifsn 4462 . . . . . . . . . . . . 13 (𝑥 ∈ (𝐹 ∖ {0}) ↔ (𝑥𝐹𝑥 ≠ 0))
252sseli 3740 . . . . . . . . . . . . . 14 (𝑥𝐹𝑥 ∈ ℂ)
2625anim1i 593 . . . . . . . . . . . . 13 ((𝑥𝐹𝑥 ≠ 0) → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
2724, 26sylbi 207 . . . . . . . . . . . 12 (𝑥 ∈ (𝐹 ∖ {0}) → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
28 eldifsn 4462 . . . . . . . . . . . . 13 (𝑦 ∈ (𝐹 ∖ {0}) ↔ (𝑦𝐹𝑦 ≠ 0))
292sseli 3740 . . . . . . . . . . . . . 14 (𝑦𝐹𝑦 ∈ ℂ)
3029anim1i 593 . . . . . . . . . . . . 13 ((𝑦𝐹𝑦 ≠ 0) → (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0))
3128, 30sylbi 207 . . . . . . . . . . . 12 (𝑦 ∈ (𝐹 ∖ {0}) → (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0))
32 mulne0 10881 . . . . . . . . . . . 12 (((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0)) → (𝑥 · 𝑦) ≠ 0)
3327, 31, 32syl2an 495 . . . . . . . . . . 11 ((𝑥 ∈ (𝐹 ∖ {0}) ∧ 𝑦 ∈ (𝐹 ∖ {0})) → (𝑥 · 𝑦) ≠ 0)
34 eldifsn 4462 . . . . . . . . . . 11 ((𝑥 · 𝑦) ∈ (𝐹 ∖ {0}) ↔ ((𝑥 · 𝑦) ∈ 𝐹 ∧ (𝑥 · 𝑦) ≠ 0))
3523, 33, 34sylanbrc 701 . . . . . . . . . 10 ((𝑥 ∈ (𝐹 ∖ {0}) ∧ 𝑦 ∈ (𝐹 ∖ {0})) → (𝑥 · 𝑦) ∈ (𝐹 ∖ {0}))
36 ax-1ne0 10217 . . . . . . . . . . 11 1 ≠ 0
37 eldifsn 4462 . . . . . . . . . . 11 (1 ∈ (𝐹 ∖ {0}) ↔ (1 ∈ 𝐹 ∧ 1 ≠ 0))
384, 36, 37mpbir2an 993 . . . . . . . . . 10 1 ∈ (𝐹 ∖ {0})
3920, 35, 38expcllem 13085 . . . . . . . . 9 ((𝐴 ∈ (𝐹 ∖ {0}) ∧ -𝐵 ∈ ℕ0) → (𝐴↑-𝐵) ∈ (𝐹 ∖ {0}))
4019, 13, 39syl2anc 696 . . . . . . . 8 (((𝐴𝐹𝐴 ≠ 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → (𝐴↑-𝐵) ∈ (𝐹 ∖ {0}))
4116, 40sseldi 3742 . . . . . . 7 (((𝐴𝐹𝐴 ≠ 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → (𝐴↑-𝐵) ∈ 𝐹)
42 eldifsn 4462 . . . . . . . . 9 ((𝐴↑-𝐵) ∈ (𝐹 ∖ {0}) ↔ ((𝐴↑-𝐵) ∈ 𝐹 ∧ (𝐴↑-𝐵) ≠ 0))
4340, 42sylib 208 . . . . . . . 8 (((𝐴𝐹𝐴 ≠ 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → ((𝐴↑-𝐵) ∈ 𝐹 ∧ (𝐴↑-𝐵) ≠ 0))
4443simprd 482 . . . . . . 7 (((𝐴𝐹𝐴 ≠ 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → (𝐴↑-𝐵) ≠ 0)
45 neeq1 2994 . . . . . . . . 9 (𝑥 = (𝐴↑-𝐵) → (𝑥 ≠ 0 ↔ (𝐴↑-𝐵) ≠ 0))
46 oveq2 6822 . . . . . . . . . 10 (𝑥 = (𝐴↑-𝐵) → (1 / 𝑥) = (1 / (𝐴↑-𝐵)))
4746eleq1d 2824 . . . . . . . . 9 (𝑥 = (𝐴↑-𝐵) → ((1 / 𝑥) ∈ 𝐹 ↔ (1 / (𝐴↑-𝐵)) ∈ 𝐹))
4845, 47imbi12d 333 . . . . . . . 8 (𝑥 = (𝐴↑-𝐵) → ((𝑥 ≠ 0 → (1 / 𝑥) ∈ 𝐹) ↔ ((𝐴↑-𝐵) ≠ 0 → (1 / (𝐴↑-𝐵)) ∈ 𝐹)))
49 expcl2lem.4 . . . . . . . . 9 ((𝑥𝐹𝑥 ≠ 0) → (1 / 𝑥) ∈ 𝐹)
5049ex 449 . . . . . . . 8 (𝑥𝐹 → (𝑥 ≠ 0 → (1 / 𝑥) ∈ 𝐹))
5148, 50vtoclga 3412 . . . . . . 7 ((𝐴↑-𝐵) ∈ 𝐹 → ((𝐴↑-𝐵) ≠ 0 → (1 / (𝐴↑-𝐵)) ∈ 𝐹))
5241, 44, 51sylc 65 . . . . . 6 (((𝐴𝐹𝐴 ≠ 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → (1 / (𝐴↑-𝐵)) ∈ 𝐹)
5315, 52eqeltrd 2839 . . . . 5 (((𝐴𝐹𝐴 ≠ 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → (𝐴𝐵) ∈ 𝐹)
5453ex 449 . . . 4 ((𝐴𝐹𝐴 ≠ 0) → ((𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ) → (𝐴𝐵) ∈ 𝐹))
557, 54jaod 394 . . 3 ((𝐴𝐹𝐴 ≠ 0) → ((𝐵 ∈ ℕ0 ∨ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → (𝐴𝐵) ∈ 𝐹))
561, 55syl5bi 232 . 2 ((𝐴𝐹𝐴 ≠ 0) → (𝐵 ∈ ℤ → (𝐴𝐵) ∈ 𝐹))
57563impia 1110 1 ((𝐴𝐹𝐴 ≠ 0 ∧ 𝐵 ∈ ℤ) → (𝐴𝐵) ∈ 𝐹)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∨ wo 382   ∧ wa 383   ∧ w3a 1072   = wceq 1632   ∈ wcel 2139   ≠ wne 2932   ∖ cdif 3712   ⊆ wss 3715  {csn 4321  (class class class)co 6814  ℂcc 10146  ℝcr 10147  0cc0 10148  1c1 10149   · cmul 10153  -cneg 10479   / cdiv 10896  ℕcn 11232  ℕ0cn0 11504  ℤcz 11589  ↑cexp 13074 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-er 7913  df-en 8124  df-dom 8125  df-sdom 8126  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-div 10897  df-nn 11233  df-n0 11505  df-z 11590  df-uz 11900  df-seq 13016  df-exp 13075 This theorem is referenced by:  rpexpcl  13093  reexpclz  13094  qexpclz  13095  m1expcl2  13096  expclzlem  13098  1exp  13103
 Copyright terms: Public domain W3C validator