MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expcllem Structured version   Visualization version   GIF version

Theorem expcllem 13428
Description: Lemma for proving nonnegative integer exponentiation closure laws. (Contributed by NM, 14-Dec-2005.)
Hypotheses
Ref Expression
expcllem.1 𝐹 ⊆ ℂ
expcllem.2 ((𝑥𝐹𝑦𝐹) → (𝑥 · 𝑦) ∈ 𝐹)
expcllem.3 1 ∈ 𝐹
Assertion
Ref Expression
expcllem ((𝐴𝐹𝐵 ∈ ℕ0) → (𝐴𝐵) ∈ 𝐹)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵   𝑥,𝐹,𝑦
Allowed substitution hint:   𝐵(𝑦)

Proof of Theorem expcllem
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnn0 11887 . 2 (𝐵 ∈ ℕ0 ↔ (𝐵 ∈ ℕ ∨ 𝐵 = 0))
2 oveq2 7153 . . . . . . 7 (𝑧 = 1 → (𝐴𝑧) = (𝐴↑1))
32eleq1d 2894 . . . . . 6 (𝑧 = 1 → ((𝐴𝑧) ∈ 𝐹 ↔ (𝐴↑1) ∈ 𝐹))
43imbi2d 342 . . . . 5 (𝑧 = 1 → ((𝐴𝐹 → (𝐴𝑧) ∈ 𝐹) ↔ (𝐴𝐹 → (𝐴↑1) ∈ 𝐹)))
5 oveq2 7153 . . . . . . 7 (𝑧 = 𝑤 → (𝐴𝑧) = (𝐴𝑤))
65eleq1d 2894 . . . . . 6 (𝑧 = 𝑤 → ((𝐴𝑧) ∈ 𝐹 ↔ (𝐴𝑤) ∈ 𝐹))
76imbi2d 342 . . . . 5 (𝑧 = 𝑤 → ((𝐴𝐹 → (𝐴𝑧) ∈ 𝐹) ↔ (𝐴𝐹 → (𝐴𝑤) ∈ 𝐹)))
8 oveq2 7153 . . . . . . 7 (𝑧 = (𝑤 + 1) → (𝐴𝑧) = (𝐴↑(𝑤 + 1)))
98eleq1d 2894 . . . . . 6 (𝑧 = (𝑤 + 1) → ((𝐴𝑧) ∈ 𝐹 ↔ (𝐴↑(𝑤 + 1)) ∈ 𝐹))
109imbi2d 342 . . . . 5 (𝑧 = (𝑤 + 1) → ((𝐴𝐹 → (𝐴𝑧) ∈ 𝐹) ↔ (𝐴𝐹 → (𝐴↑(𝑤 + 1)) ∈ 𝐹)))
11 oveq2 7153 . . . . . . 7 (𝑧 = 𝐵 → (𝐴𝑧) = (𝐴𝐵))
1211eleq1d 2894 . . . . . 6 (𝑧 = 𝐵 → ((𝐴𝑧) ∈ 𝐹 ↔ (𝐴𝐵) ∈ 𝐹))
1312imbi2d 342 . . . . 5 (𝑧 = 𝐵 → ((𝐴𝐹 → (𝐴𝑧) ∈ 𝐹) ↔ (𝐴𝐹 → (𝐴𝐵) ∈ 𝐹)))
14 expcllem.1 . . . . . . . . 9 𝐹 ⊆ ℂ
1514sseli 3960 . . . . . . . 8 (𝐴𝐹𝐴 ∈ ℂ)
16 exp1 13423 . . . . . . . 8 (𝐴 ∈ ℂ → (𝐴↑1) = 𝐴)
1715, 16syl 17 . . . . . . 7 (𝐴𝐹 → (𝐴↑1) = 𝐴)
1817eleq1d 2894 . . . . . 6 (𝐴𝐹 → ((𝐴↑1) ∈ 𝐹𝐴𝐹))
1918ibir 269 . . . . 5 (𝐴𝐹 → (𝐴↑1) ∈ 𝐹)
20 expcllem.2 . . . . . . . . . . . 12 ((𝑥𝐹𝑦𝐹) → (𝑥 · 𝑦) ∈ 𝐹)
2120caovcl 7331 . . . . . . . . . . 11 (((𝐴𝑤) ∈ 𝐹𝐴𝐹) → ((𝐴𝑤) · 𝐴) ∈ 𝐹)
2221ancoms 459 . . . . . . . . . 10 ((𝐴𝐹 ∧ (𝐴𝑤) ∈ 𝐹) → ((𝐴𝑤) · 𝐴) ∈ 𝐹)
2322adantlr 711 . . . . . . . . 9 (((𝐴𝐹𝑤 ∈ ℕ) ∧ (𝐴𝑤) ∈ 𝐹) → ((𝐴𝑤) · 𝐴) ∈ 𝐹)
24 nnnn0 11892 . . . . . . . . . . . 12 (𝑤 ∈ ℕ → 𝑤 ∈ ℕ0)
25 expp1 13424 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℕ0) → (𝐴↑(𝑤 + 1)) = ((𝐴𝑤) · 𝐴))
2615, 24, 25syl2an 595 . . . . . . . . . . 11 ((𝐴𝐹𝑤 ∈ ℕ) → (𝐴↑(𝑤 + 1)) = ((𝐴𝑤) · 𝐴))
2726eleq1d 2894 . . . . . . . . . 10 ((𝐴𝐹𝑤 ∈ ℕ) → ((𝐴↑(𝑤 + 1)) ∈ 𝐹 ↔ ((𝐴𝑤) · 𝐴) ∈ 𝐹))
2827adantr 481 . . . . . . . . 9 (((𝐴𝐹𝑤 ∈ ℕ) ∧ (𝐴𝑤) ∈ 𝐹) → ((𝐴↑(𝑤 + 1)) ∈ 𝐹 ↔ ((𝐴𝑤) · 𝐴) ∈ 𝐹))
2923, 28mpbird 258 . . . . . . . 8 (((𝐴𝐹𝑤 ∈ ℕ) ∧ (𝐴𝑤) ∈ 𝐹) → (𝐴↑(𝑤 + 1)) ∈ 𝐹)
3029exp31 420 . . . . . . 7 (𝐴𝐹 → (𝑤 ∈ ℕ → ((𝐴𝑤) ∈ 𝐹 → (𝐴↑(𝑤 + 1)) ∈ 𝐹)))
3130com12 32 . . . . . 6 (𝑤 ∈ ℕ → (𝐴𝐹 → ((𝐴𝑤) ∈ 𝐹 → (𝐴↑(𝑤 + 1)) ∈ 𝐹)))
3231a2d 29 . . . . 5 (𝑤 ∈ ℕ → ((𝐴𝐹 → (𝐴𝑤) ∈ 𝐹) → (𝐴𝐹 → (𝐴↑(𝑤 + 1)) ∈ 𝐹)))
334, 7, 10, 13, 19, 32nnind 11644 . . . 4 (𝐵 ∈ ℕ → (𝐴𝐹 → (𝐴𝐵) ∈ 𝐹))
3433impcom 408 . . 3 ((𝐴𝐹𝐵 ∈ ℕ) → (𝐴𝐵) ∈ 𝐹)
35 oveq2 7153 . . . . 5 (𝐵 = 0 → (𝐴𝐵) = (𝐴↑0))
36 exp0 13421 . . . . . 6 (𝐴 ∈ ℂ → (𝐴↑0) = 1)
3715, 36syl 17 . . . . 5 (𝐴𝐹 → (𝐴↑0) = 1)
3835, 37sylan9eqr 2875 . . . 4 ((𝐴𝐹𝐵 = 0) → (𝐴𝐵) = 1)
39 expcllem.3 . . . 4 1 ∈ 𝐹
4038, 39syl6eqel 2918 . . 3 ((𝐴𝐹𝐵 = 0) → (𝐴𝐵) ∈ 𝐹)
4134, 40jaodan 951 . 2 ((𝐴𝐹 ∧ (𝐵 ∈ ℕ ∨ 𝐵 = 0)) → (𝐴𝐵) ∈ 𝐹)
421, 41sylan2b 593 1 ((𝐴𝐹𝐵 ∈ ℕ0) → (𝐴𝐵) ∈ 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  wo 841   = wceq 1528  wcel 2105  wss 3933  (class class class)co 7145  cc 10523  0cc0 10525  1c1 10526   + caddc 10528   · cmul 10530  cn 11626  0cn0 11885  cexp 13417
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-n0 11886  df-z 11970  df-uz 12232  df-seq 13358  df-exp 13418
This theorem is referenced by:  expcl2lem  13429  nnexpcl  13430  nn0expcl  13431  zexpcl  13432  qexpcl  13433  reexpcl  13434  expcl  13435  expge0  13453  expge1  13454  lgsfcl2  25806
  Copyright terms: Public domain W3C validator