MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expclzlem Structured version   Visualization version   GIF version

Theorem expclzlem 12821
Description: Closure law for integer exponentiation. (Contributed by Mario Carneiro, 4-Jun-2014.)
Assertion
Ref Expression
expclzlem ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝐴𝑁) ∈ (ℂ ∖ {0}))

Proof of Theorem expclzlem
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldifsn 4292 . . . 4 (𝐴 ∈ (ℂ ∖ {0}) ↔ (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0))
2 difss 3720 . . . . . 6 (ℂ ∖ {0}) ⊆ ℂ
3 eldifsn 4292 . . . . . . 7 (𝑥 ∈ (ℂ ∖ {0}) ↔ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
4 eldifsn 4292 . . . . . . 7 (𝑦 ∈ (ℂ ∖ {0}) ↔ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0))
5 mulcl 9965 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ)
65ad2ant2r 782 . . . . . . . 8 (((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0)) → (𝑥 · 𝑦) ∈ ℂ)
7 mulne0 10614 . . . . . . . 8 (((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0)) → (𝑥 · 𝑦) ≠ 0)
8 eldifsn 4292 . . . . . . . 8 ((𝑥 · 𝑦) ∈ (ℂ ∖ {0}) ↔ ((𝑥 · 𝑦) ∈ ℂ ∧ (𝑥 · 𝑦) ≠ 0))
96, 7, 8sylanbrc 697 . . . . . . 7 (((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0)) → (𝑥 · 𝑦) ∈ (ℂ ∖ {0}))
103, 4, 9syl2anb 496 . . . . . 6 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑥 · 𝑦) ∈ (ℂ ∖ {0}))
11 ax-1cn 9939 . . . . . . 7 1 ∈ ℂ
12 ax-1ne0 9950 . . . . . . 7 1 ≠ 0
13 eldifsn 4292 . . . . . . 7 (1 ∈ (ℂ ∖ {0}) ↔ (1 ∈ ℂ ∧ 1 ≠ 0))
1411, 12, 13mpbir2an 954 . . . . . 6 1 ∈ (ℂ ∖ {0})
15 reccl 10637 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) → (1 / 𝑥) ∈ ℂ)
16 recne0 10643 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) → (1 / 𝑥) ≠ 0)
1715, 16jca 554 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) → ((1 / 𝑥) ∈ ℂ ∧ (1 / 𝑥) ≠ 0))
18 eldifsn 4292 . . . . . . . 8 ((1 / 𝑥) ∈ (ℂ ∖ {0}) ↔ ((1 / 𝑥) ∈ ℂ ∧ (1 / 𝑥) ≠ 0))
1917, 3, 183imtr4i 281 . . . . . . 7 (𝑥 ∈ (ℂ ∖ {0}) → (1 / 𝑥) ∈ (ℂ ∖ {0}))
2019adantr 481 . . . . . 6 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑥 ≠ 0) → (1 / 𝑥) ∈ (ℂ ∖ {0}))
212, 10, 14, 20expcl2lem 12809 . . . . 5 ((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝐴𝑁) ∈ (ℂ ∖ {0}))
22213expia 1264 . . . 4 ((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐴 ≠ 0) → (𝑁 ∈ ℤ → (𝐴𝑁) ∈ (ℂ ∖ {0})))
231, 22sylanbr 490 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝐴 ≠ 0) → (𝑁 ∈ ℤ → (𝐴𝑁) ∈ (ℂ ∖ {0})))
2423anabss3 863 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝑁 ∈ ℤ → (𝐴𝑁) ∈ (ℂ ∖ {0})))
25243impia 1258 1 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝐴𝑁) ∈ (ℂ ∖ {0}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036  wcel 1992  wne 2796  cdif 3557  {csn 4153  (class class class)co 6605  cc 9879  0cc0 9881  1c1 9882   · cmul 9886   / cdiv 10629  cz 11322  cexp 12797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-om 7014  df-2nd 7117  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-er 7688  df-en 7901  df-dom 7902  df-sdom 7903  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-div 10630  df-nn 10966  df-n0 11238  df-z 11323  df-uz 11632  df-seq 12739  df-exp 12798
This theorem is referenced by:  expclz  12822  expne0i  12829  expghm  19758
  Copyright terms: Public domain W3C validator