MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expclzlem Structured version   Visualization version   GIF version

Theorem expclzlem 13456
Description: Closure law for integer exponentiation. (Contributed by Mario Carneiro, 4-Jun-2014.)
Assertion
Ref Expression
expclzlem ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝐴𝑁) ∈ (ℂ ∖ {0}))

Proof of Theorem expclzlem
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldifsn 4721 . . . 4 (𝐴 ∈ (ℂ ∖ {0}) ↔ (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0))
2 difss 4110 . . . . . 6 (ℂ ∖ {0}) ⊆ ℂ
3 eldifsn 4721 . . . . . . 7 (𝑥 ∈ (ℂ ∖ {0}) ↔ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
4 eldifsn 4721 . . . . . . 7 (𝑦 ∈ (ℂ ∖ {0}) ↔ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0))
5 mulcl 10623 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ)
65ad2ant2r 745 . . . . . . . 8 (((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0)) → (𝑥 · 𝑦) ∈ ℂ)
7 mulne0 11284 . . . . . . . 8 (((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0)) → (𝑥 · 𝑦) ≠ 0)
8 eldifsn 4721 . . . . . . . 8 ((𝑥 · 𝑦) ∈ (ℂ ∖ {0}) ↔ ((𝑥 · 𝑦) ∈ ℂ ∧ (𝑥 · 𝑦) ≠ 0))
96, 7, 8sylanbrc 585 . . . . . . 7 (((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0)) → (𝑥 · 𝑦) ∈ (ℂ ∖ {0}))
103, 4, 9syl2anb 599 . . . . . 6 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑥 · 𝑦) ∈ (ℂ ∖ {0}))
11 ax-1cn 10597 . . . . . . 7 1 ∈ ℂ
12 ax-1ne0 10608 . . . . . . 7 1 ≠ 0
13 eldifsn 4721 . . . . . . 7 (1 ∈ (ℂ ∖ {0}) ↔ (1 ∈ ℂ ∧ 1 ≠ 0))
1411, 12, 13mpbir2an 709 . . . . . 6 1 ∈ (ℂ ∖ {0})
15 reccl 11307 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) → (1 / 𝑥) ∈ ℂ)
16 recne0 11313 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) → (1 / 𝑥) ≠ 0)
1715, 16jca 514 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) → ((1 / 𝑥) ∈ ℂ ∧ (1 / 𝑥) ≠ 0))
18 eldifsn 4721 . . . . . . . 8 ((1 / 𝑥) ∈ (ℂ ∖ {0}) ↔ ((1 / 𝑥) ∈ ℂ ∧ (1 / 𝑥) ≠ 0))
1917, 3, 183imtr4i 294 . . . . . . 7 (𝑥 ∈ (ℂ ∖ {0}) → (1 / 𝑥) ∈ (ℂ ∖ {0}))
2019adantr 483 . . . . . 6 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑥 ≠ 0) → (1 / 𝑥) ∈ (ℂ ∖ {0}))
212, 10, 14, 20expcl2lem 13444 . . . . 5 ((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝐴𝑁) ∈ (ℂ ∖ {0}))
22213expia 1117 . . . 4 ((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐴 ≠ 0) → (𝑁 ∈ ℤ → (𝐴𝑁) ∈ (ℂ ∖ {0})))
231, 22sylanbr 584 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝐴 ≠ 0) → (𝑁 ∈ ℤ → (𝐴𝑁) ∈ (ℂ ∖ {0})))
2423anabss3 673 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝑁 ∈ ℤ → (𝐴𝑁) ∈ (ℂ ∖ {0})))
25243impia 1113 1 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝐴𝑁) ∈ (ℂ ∖ {0}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083  wcel 2114  wne 3018  cdif 3935  {csn 4569  (class class class)co 7158  cc 10537  0cc0 10539  1c1 10540   · cmul 10544   / cdiv 11299  cz 11984  cexp 13432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-n0 11901  df-z 11985  df-uz 12247  df-seq 13373  df-exp 13433
This theorem is referenced by:  expclz  13457  expne0i  13464  expghm  20645
  Copyright terms: Public domain W3C validator