MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expge0 Structured version   Visualization version   GIF version

Theorem expge0 12936
Description: Nonnegative integer exponentiation with a nonnegative mantissa is nonnegative. (Contributed by NM, 16-Dec-2005.) (Revised by Mario Carneiro, 4-Jun-2014.)
Assertion
Ref Expression
expge0 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 0 ≤ 𝐴) → 0 ≤ (𝐴𝑁))

Proof of Theorem expge0
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 4689 . . . . 5 (𝑧 = 𝐴 → (0 ≤ 𝑧 ↔ 0 ≤ 𝐴))
21elrab 3396 . . . 4 (𝐴 ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧} ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴))
3 ssrab2 3720 . . . . . . 7 {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧} ⊆ ℝ
4 ax-resscn 10031 . . . . . . 7 ℝ ⊆ ℂ
53, 4sstri 3645 . . . . . 6 {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧} ⊆ ℂ
6 breq2 4689 . . . . . . . 8 (𝑧 = 𝑥 → (0 ≤ 𝑧 ↔ 0 ≤ 𝑥))
76elrab 3396 . . . . . . 7 (𝑥 ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧} ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
8 breq2 4689 . . . . . . . 8 (𝑧 = 𝑦 → (0 ≤ 𝑧 ↔ 0 ≤ 𝑦))
98elrab 3396 . . . . . . 7 (𝑦 ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧} ↔ (𝑦 ∈ ℝ ∧ 0 ≤ 𝑦))
10 remulcl 10059 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 · 𝑦) ∈ ℝ)
1110ad2ant2r 798 . . . . . . . 8 (((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ (𝑦 ∈ ℝ ∧ 0 ≤ 𝑦)) → (𝑥 · 𝑦) ∈ ℝ)
12 mulge0 10584 . . . . . . . 8 (((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ (𝑦 ∈ ℝ ∧ 0 ≤ 𝑦)) → 0 ≤ (𝑥 · 𝑦))
13 breq2 4689 . . . . . . . . 9 (𝑧 = (𝑥 · 𝑦) → (0 ≤ 𝑧 ↔ 0 ≤ (𝑥 · 𝑦)))
1413elrab 3396 . . . . . . . 8 ((𝑥 · 𝑦) ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧} ↔ ((𝑥 · 𝑦) ∈ ℝ ∧ 0 ≤ (𝑥 · 𝑦)))
1511, 12, 14sylanbrc 699 . . . . . . 7 (((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ (𝑦 ∈ ℝ ∧ 0 ≤ 𝑦)) → (𝑥 · 𝑦) ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧})
167, 9, 15syl2anb 495 . . . . . 6 ((𝑥 ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧} ∧ 𝑦 ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧}) → (𝑥 · 𝑦) ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧})
17 1re 10077 . . . . . . 7 1 ∈ ℝ
18 0le1 10589 . . . . . . 7 0 ≤ 1
19 breq2 4689 . . . . . . . 8 (𝑧 = 1 → (0 ≤ 𝑧 ↔ 0 ≤ 1))
2019elrab 3396 . . . . . . 7 (1 ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧} ↔ (1 ∈ ℝ ∧ 0 ≤ 1))
2117, 18, 20mpbir2an 975 . . . . . 6 1 ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧}
225, 16, 21expcllem 12911 . . . . 5 ((𝐴 ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧} ∧ 𝑁 ∈ ℕ0) → (𝐴𝑁) ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧})
23 breq2 4689 . . . . . . 7 (𝑧 = (𝐴𝑁) → (0 ≤ 𝑧 ↔ 0 ≤ (𝐴𝑁)))
2423elrab 3396 . . . . . 6 ((𝐴𝑁) ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧} ↔ ((𝐴𝑁) ∈ ℝ ∧ 0 ≤ (𝐴𝑁)))
2524simprbi 479 . . . . 5 ((𝐴𝑁) ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧} → 0 ≤ (𝐴𝑁))
2622, 25syl 17 . . . 4 ((𝐴 ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧} ∧ 𝑁 ∈ ℕ0) → 0 ≤ (𝐴𝑁))
272, 26sylanbr 489 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑁 ∈ ℕ0) → 0 ≤ (𝐴𝑁))
28273impa 1278 . 2 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝑁 ∈ ℕ0) → 0 ≤ (𝐴𝑁))
29283com23 1291 1 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 0 ≤ 𝐴) → 0 ≤ (𝐴𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1054  wcel 2030  {crab 2945   class class class wbr 4685  (class class class)co 6690  cc 9972  cr 9973  0cc0 9974  1c1 9975   · cmul 9979  cle 10113  0cn0 11330  cexp 12900
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-n0 11331  df-z 11416  df-uz 11726  df-seq 12842  df-exp 12901
This theorem is referenced by:  leexp2r  12958  leexp1a  12959  expge0d  13066  rpnnen2lem4  14990
  Copyright terms: Public domain W3C validator