Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  expgrowth Structured version   Visualization version   GIF version

Theorem expgrowth 37355
Description: Exponential growth and decay model. The derivative of a function y of variable t equals a constant k times y itself, iff y equals some constant C times the exponential of kt. This theorem and expgrowthi 37353 illustrate one of the simplest and most crucial classes of differential equations, equations that relate functions to their derivatives.

Section 6.3 of [Strang] p. 242 calls y' = ky "the most important differential equation in applied mathematics". In the field of population ecology it is known as the Malthusian growth model or exponential law, and C, k, and t correspond to initial population size, growth rate, and time respectively (https://en.wikipedia.org/wiki/Malthusian_growth_model); and in finance, the model appears in a similar role in continuous compounding with C as the initial amount of money. In exponential decay models, k is often expressed as the negative of a positive constant λ.

Here y' is given as (𝑆 D 𝑌), C as 𝑐, and ky as ((𝑆 × {𝐾}) ∘𝑓 · 𝑌). (𝑆 × {𝐾}) is the constant function that maps any real or complex input to k and 𝑓 · is multiplication as a function operation.

The leftward direction of the biconditional is as given in http://www.saylor.org/site/wp-content/uploads/2011/06/MA221-2.1.1.pdf pp. 1-2, which also notes the reverse direction ("While we will not prove this here, it turns out that these are the only functions that satisfy this equation."). The rightward direction is Theorem 5.1 of [LarsonHostetlerEdwards] p. 375 (which notes " C is the initial value of y, and k is the proportionality constant. Exponential growth occurs when k > 0, and exponential decay occurs when k < 0."); its proof here closely follows the proof of y' = y in https://proofwiki.org/wiki/Exponential_Growth_Equation/Special_Case.

Statements for this and expgrowthi 37353 formulated by Mario Carneiro. (Contributed by Steve Rodriguez, 24-Nov-2015.)

Hypotheses
Ref Expression
expgrowth.s (𝜑𝑆 ∈ {ℝ, ℂ})
expgrowth.k (𝜑𝐾 ∈ ℂ)
expgrowth.y (𝜑𝑌:𝑆⟶ℂ)
expgrowth.dy (𝜑 → dom (𝑆 D 𝑌) = 𝑆)
Assertion
Ref Expression
expgrowth (𝜑 → ((𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘𝑓 · 𝑌) ↔ ∃𝑐 ∈ ℂ 𝑌 = (𝑡𝑆 ↦ (𝑐 · (exp‘(𝐾 · 𝑡))))))
Distinct variable groups:   𝑡,𝑐,𝐾   𝑆,𝑐,𝑡   𝑌,𝑐
Allowed substitution hints:   𝜑(𝑡,𝑐)   𝑌(𝑡)

Proof of Theorem expgrowth
Dummy variables 𝑢 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 expgrowth.s . . . . . . . . . . . . . . . . 17 (𝜑𝑆 ∈ {ℝ, ℂ})
2 cnelprrecn 9881 . . . . . . . . . . . . . . . . . 18 ℂ ∈ {ℝ, ℂ}
32a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → ℂ ∈ {ℝ, ℂ})
4 expgrowth.k . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐾 ∈ ℂ)
5 recnprss 23387 . . . . . . . . . . . . . . . . . . . . . 22 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
61, 5syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑆 ⊆ ℂ)
76sseld 3562 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑢𝑆𝑢 ∈ ℂ))
8 mulcl 9872 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 ∈ ℂ ∧ 𝑢 ∈ ℂ) → (𝐾 · 𝑢) ∈ ℂ)
94, 7, 8syl6an 565 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑢𝑆 → (𝐾 · 𝑢) ∈ ℂ))
109imp 443 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑢𝑆) → (𝐾 · 𝑢) ∈ ℂ)
1110negcld 10226 . . . . . . . . . . . . . . . . 17 ((𝜑𝑢𝑆) → -(𝐾 · 𝑢) ∈ ℂ)
124negcld 10226 . . . . . . . . . . . . . . . . . 18 (𝜑 → -𝐾 ∈ ℂ)
1312adantr 479 . . . . . . . . . . . . . . . . 17 ((𝜑𝑢𝑆) → -𝐾 ∈ ℂ)
14 efcl 14594 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ℂ → (exp‘𝑦) ∈ ℂ)
1514adantl 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ ℂ) → (exp‘𝑦) ∈ ℂ)
164adantr 479 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑢𝑆) → 𝐾 ∈ ℂ)
177imp 443 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑢𝑆) → 𝑢 ∈ ℂ)
18 ax-1cn 9846 . . . . . . . . . . . . . . . . . . . . 21 1 ∈ ℂ
1918a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑢𝑆) → 1 ∈ ℂ)
201dvmptid 23439 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑆 D (𝑢𝑆𝑢)) = (𝑢𝑆 ↦ 1))
211, 17, 19, 20, 4dvmptcmul 23446 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑆 D (𝑢𝑆 ↦ (𝐾 · 𝑢))) = (𝑢𝑆 ↦ (𝐾 · 1)))
224mulid1d 9909 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐾 · 1) = 𝐾)
2322mpteq2dv 4663 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑢𝑆 ↦ (𝐾 · 1)) = (𝑢𝑆𝐾))
2421, 23eqtrd 2639 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑆 D (𝑢𝑆 ↦ (𝐾 · 𝑢))) = (𝑢𝑆𝐾))
251, 10, 16, 24dvmptneg 23448 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑆 D (𝑢𝑆 ↦ -(𝐾 · 𝑢))) = (𝑢𝑆 ↦ -𝐾))
26 dvef 23460 . . . . . . . . . . . . . . . . . . 19 (ℂ D exp) = exp
27 eff 14593 . . . . . . . . . . . . . . . . . . . . . 22 exp:ℂ⟶ℂ
28 ffn 5940 . . . . . . . . . . . . . . . . . . . . . 22 (exp:ℂ⟶ℂ → exp Fn ℂ)
2927, 28ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 exp Fn ℂ
30 dffn5 6132 . . . . . . . . . . . . . . . . . . . . 21 (exp Fn ℂ ↔ exp = (𝑦 ∈ ℂ ↦ (exp‘𝑦)))
3129, 30mpbi 218 . . . . . . . . . . . . . . . . . . . 20 exp = (𝑦 ∈ ℂ ↦ (exp‘𝑦))
3231oveq2i 6534 . . . . . . . . . . . . . . . . . . 19 (ℂ D exp) = (ℂ D (𝑦 ∈ ℂ ↦ (exp‘𝑦)))
3326, 32, 313eqtr3i 2635 . . . . . . . . . . . . . . . . . 18 (ℂ D (𝑦 ∈ ℂ ↦ (exp‘𝑦))) = (𝑦 ∈ ℂ ↦ (exp‘𝑦))
3433a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ (exp‘𝑦))) = (𝑦 ∈ ℂ ↦ (exp‘𝑦)))
35 fveq2 6084 . . . . . . . . . . . . . . . . 17 (𝑦 = -(𝐾 · 𝑢) → (exp‘𝑦) = (exp‘-(𝐾 · 𝑢)))
361, 3, 11, 13, 15, 15, 25, 34, 35, 35dvmptco 23454 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑆 D (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = (𝑢𝑆 ↦ ((exp‘-(𝐾 · 𝑢)) · -𝐾)))
3736oveq2d 6539 . . . . . . . . . . . . . . 15 (𝜑 → (𝑌𝑓 · (𝑆 D (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = (𝑌𝑓 · (𝑢𝑆 ↦ ((exp‘-(𝐾 · 𝑢)) · -𝐾))))
38 expgrowth.y . . . . . . . . . . . . . . . 16 (𝜑𝑌:𝑆⟶ℂ)
39 efcl 14594 . . . . . . . . . . . . . . . . . . . 20 (-(𝐾 · 𝑢) ∈ ℂ → (exp‘-(𝐾 · 𝑢)) ∈ ℂ)
4011, 39syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑢𝑆) → (exp‘-(𝐾 · 𝑢)) ∈ ℂ)
4140, 13mulcld 9912 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑢𝑆) → ((exp‘-(𝐾 · 𝑢)) · -𝐾) ∈ ℂ)
42 eqid 2605 . . . . . . . . . . . . . . . . . 18 (𝑢𝑆 ↦ ((exp‘-(𝐾 · 𝑢)) · -𝐾)) = (𝑢𝑆 ↦ ((exp‘-(𝐾 · 𝑢)) · -𝐾))
4341, 42fmptd 6273 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑢𝑆 ↦ ((exp‘-(𝐾 · 𝑢)) · -𝐾)):𝑆⟶ℂ)
4436feq1d 5925 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑆 D (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))):𝑆⟶ℂ ↔ (𝑢𝑆 ↦ ((exp‘-(𝐾 · 𝑢)) · -𝐾)):𝑆⟶ℂ))
4543, 44mpbird 245 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑆 D (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))):𝑆⟶ℂ)
46 mulcom 9874 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) = (𝑦 · 𝑥))
4746adantl 480 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 · 𝑦) = (𝑦 · 𝑥))
481, 38, 45, 47caofcom 6800 . . . . . . . . . . . . . . 15 (𝜑 → (𝑌𝑓 · (𝑆 D (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((𝑆 D (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘𝑓 · 𝑌))
4937, 48eqtr3d 2641 . . . . . . . . . . . . . 14 (𝜑 → (𝑌𝑓 · (𝑢𝑆 ↦ ((exp‘-(𝐾 · 𝑢)) · -𝐾))) = ((𝑆 D (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘𝑓 · 𝑌))
5049oveq2d 6539 . . . . . . . . . . . . 13 (𝜑 → (((𝑆 D 𝑌) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘𝑓 + (𝑌𝑓 · (𝑢𝑆 ↦ ((exp‘-(𝐾 · 𝑢)) · -𝐾)))) = (((𝑆 D 𝑌) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘𝑓 + ((𝑆 D (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘𝑓 · 𝑌)))
51 fconst6g 5988 . . . . . . . . . . . . . . . . . 18 (-𝐾 ∈ ℂ → (𝑆 × {-𝐾}):𝑆⟶ℂ)
5212, 51syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑆 × {-𝐾}):𝑆⟶ℂ)
53 eqid 2605 . . . . . . . . . . . . . . . . . 18 (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))) = (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))
5440, 53fmptd 6273 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))):𝑆⟶ℂ)
551, 52, 54, 47caofcom 6800 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑆 × {-𝐾}) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = ((𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))) ∘𝑓 · (𝑆 × {-𝐾})))
56 eqidd 2606 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))) = (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))
57 fconstmpt 5071 . . . . . . . . . . . . . . . . . 18 (𝑆 × {-𝐾}) = (𝑢𝑆 ↦ -𝐾)
5857a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑆 × {-𝐾}) = (𝑢𝑆 ↦ -𝐾))
591, 40, 13, 56, 58offval2 6785 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))) ∘𝑓 · (𝑆 × {-𝐾})) = (𝑢𝑆 ↦ ((exp‘-(𝐾 · 𝑢)) · -𝐾)))
6055, 59eqtrd 2639 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑆 × {-𝐾}) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = (𝑢𝑆 ↦ ((exp‘-(𝐾 · 𝑢)) · -𝐾)))
6160oveq2d 6539 . . . . . . . . . . . . . 14 (𝜑 → (𝑌𝑓 · ((𝑆 × {-𝐾}) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = (𝑌𝑓 · (𝑢𝑆 ↦ ((exp‘-(𝐾 · 𝑢)) · -𝐾))))
6261oveq2d 6539 . . . . . . . . . . . . 13 (𝜑 → (((𝑆 D 𝑌) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘𝑓 + (𝑌𝑓 · ((𝑆 × {-𝐾}) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))))) = (((𝑆 D 𝑌) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘𝑓 + (𝑌𝑓 · (𝑢𝑆 ↦ ((exp‘-(𝐾 · 𝑢)) · -𝐾)))))
63 expgrowth.dy . . . . . . . . . . . . . 14 (𝜑 → dom (𝑆 D 𝑌) = 𝑆)
6436dmeqd 5231 . . . . . . . . . . . . . . 15 (𝜑 → dom (𝑆 D (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = dom (𝑢𝑆 ↦ ((exp‘-(𝐾 · 𝑢)) · -𝐾)))
6542, 41dmmptd 5919 . . . . . . . . . . . . . . 15 (𝜑 → dom (𝑢𝑆 ↦ ((exp‘-(𝐾 · 𝑢)) · -𝐾)) = 𝑆)
6664, 65eqtrd 2639 . . . . . . . . . . . . . 14 (𝜑 → dom (𝑆 D (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = 𝑆)
671, 38, 54, 63, 66dvmulf 23425 . . . . . . . . . . . . 13 (𝜑 → (𝑆 D (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = (((𝑆 D 𝑌) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘𝑓 + ((𝑆 D (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘𝑓 · 𝑌)))
6850, 62, 673eqtr4rd 2650 . . . . . . . . . . . 12 (𝜑 → (𝑆 D (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = (((𝑆 D 𝑌) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘𝑓 + (𝑌𝑓 · ((𝑆 × {-𝐾}) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))))))
69 ofmul12 37345 . . . . . . . . . . . . . 14 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝑌:𝑆⟶ℂ) ∧ ((𝑆 × {-𝐾}):𝑆⟶ℂ ∧ (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))):𝑆⟶ℂ)) → (𝑌𝑓 · ((𝑆 × {-𝐾}) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((𝑆 × {-𝐾}) ∘𝑓 · (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))))
701, 38, 52, 54, 69syl22anc 1318 . . . . . . . . . . . . 13 (𝜑 → (𝑌𝑓 · ((𝑆 × {-𝐾}) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((𝑆 × {-𝐾}) ∘𝑓 · (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))))
7170oveq2d 6539 . . . . . . . . . . . 12 (𝜑 → (((𝑆 D 𝑌) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘𝑓 + (𝑌𝑓 · ((𝑆 × {-𝐾}) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))))) = (((𝑆 D 𝑌) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘𝑓 + ((𝑆 × {-𝐾}) ∘𝑓 · (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))))))
7268, 71eqtrd 2639 . . . . . . . . . . 11 (𝜑 → (𝑆 D (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = (((𝑆 D 𝑌) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘𝑓 + ((𝑆 × {-𝐾}) ∘𝑓 · (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))))))
73 oveq1 6530 . . . . . . . . . . . 12 ((𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘𝑓 · 𝑌) → ((𝑆 D 𝑌) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = (((𝑆 × {𝐾}) ∘𝑓 · 𝑌) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))))
7473oveq1d 6538 . . . . . . . . . . 11 ((𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘𝑓 · 𝑌) → (((𝑆 D 𝑌) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘𝑓 + ((𝑆 × {-𝐾}) ∘𝑓 · (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))))) = ((((𝑆 × {𝐾}) ∘𝑓 · 𝑌) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘𝑓 + ((𝑆 × {-𝐾}) ∘𝑓 · (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))))))
7572, 74sylan9eq 2659 . . . . . . . . . 10 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘𝑓 · 𝑌)) → (𝑆 D (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((((𝑆 × {𝐾}) ∘𝑓 · 𝑌) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘𝑓 + ((𝑆 × {-𝐾}) ∘𝑓 · (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))))))
76 mulass 9876 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧)))
7776adantl 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧)))
781, 52, 38, 54, 77caofass 6802 . . . . . . . . . . . . 13 (𝜑 → (((𝑆 × {-𝐾}) ∘𝑓 · 𝑌) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = ((𝑆 × {-𝐾}) ∘𝑓 · (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))))
7978oveq2d 6539 . . . . . . . . . . . 12 (𝜑 → ((((𝑆 × {𝐾}) ∘𝑓 · 𝑌) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘𝑓 + (((𝑆 × {-𝐾}) ∘𝑓 · 𝑌) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((((𝑆 × {𝐾}) ∘𝑓 · 𝑌) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘𝑓 + ((𝑆 × {-𝐾}) ∘𝑓 · (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))))))
8079eqeq2d 2615 . . . . . . . . . . 11 (𝜑 → ((𝑆 D (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((((𝑆 × {𝐾}) ∘𝑓 · 𝑌) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘𝑓 + (((𝑆 × {-𝐾}) ∘𝑓 · 𝑌) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) ↔ (𝑆 D (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((((𝑆 × {𝐾}) ∘𝑓 · 𝑌) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘𝑓 + ((𝑆 × {-𝐾}) ∘𝑓 · (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))))))
8180adantr 479 . . . . . . . . . 10 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘𝑓 · 𝑌)) → ((𝑆 D (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((((𝑆 × {𝐾}) ∘𝑓 · 𝑌) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘𝑓 + (((𝑆 × {-𝐾}) ∘𝑓 · 𝑌) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) ↔ (𝑆 D (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((((𝑆 × {𝐾}) ∘𝑓 · 𝑌) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘𝑓 + ((𝑆 × {-𝐾}) ∘𝑓 · (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))))))
8275, 81mpbird 245 . . . . . . . . 9 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘𝑓 · 𝑌)) → (𝑆 D (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((((𝑆 × {𝐾}) ∘𝑓 · 𝑌) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘𝑓 + (((𝑆 × {-𝐾}) ∘𝑓 · 𝑌) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))))
83 mulcl 9872 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ)
8483adantl 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 · 𝑦) ∈ ℂ)
85 fconst6g 5988 . . . . . . . . . . . . . 14 (𝐾 ∈ ℂ → (𝑆 × {𝐾}):𝑆⟶ℂ)
864, 85syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝑆 × {𝐾}):𝑆⟶ℂ)
87 inidm 3779 . . . . . . . . . . . . 13 (𝑆𝑆) = 𝑆
8884, 86, 38, 1, 1, 87off 6783 . . . . . . . . . . . 12 (𝜑 → ((𝑆 × {𝐾}) ∘𝑓 · 𝑌):𝑆⟶ℂ)
8984, 52, 38, 1, 1, 87off 6783 . . . . . . . . . . . 12 (𝜑 → ((𝑆 × {-𝐾}) ∘𝑓 · 𝑌):𝑆⟶ℂ)
90 adddir 9883 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))
9190adantl 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))
921, 54, 88, 89, 91caofdir 6805 . . . . . . . . . . 11 (𝜑 → ((((𝑆 × {𝐾}) ∘𝑓 · 𝑌) ∘𝑓 + ((𝑆 × {-𝐾}) ∘𝑓 · 𝑌)) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = ((((𝑆 × {𝐾}) ∘𝑓 · 𝑌) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘𝑓 + (((𝑆 × {-𝐾}) ∘𝑓 · 𝑌) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))))
9392eqeq2d 2615 . . . . . . . . . 10 (𝜑 → ((𝑆 D (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((((𝑆 × {𝐾}) ∘𝑓 · 𝑌) ∘𝑓 + ((𝑆 × {-𝐾}) ∘𝑓 · 𝑌)) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ↔ (𝑆 D (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((((𝑆 × {𝐾}) ∘𝑓 · 𝑌) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘𝑓 + (((𝑆 × {-𝐾}) ∘𝑓 · 𝑌) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))))))
9493adantr 479 . . . . . . . . 9 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘𝑓 · 𝑌)) → ((𝑆 D (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((((𝑆 × {𝐾}) ∘𝑓 · 𝑌) ∘𝑓 + ((𝑆 × {-𝐾}) ∘𝑓 · 𝑌)) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ↔ (𝑆 D (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((((𝑆 × {𝐾}) ∘𝑓 · 𝑌) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘𝑓 + (((𝑆 × {-𝐾}) ∘𝑓 · 𝑌) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))))))
9582, 94mpbird 245 . . . . . . . 8 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘𝑓 · 𝑌)) → (𝑆 D (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((((𝑆 × {𝐾}) ∘𝑓 · 𝑌) ∘𝑓 + ((𝑆 × {-𝐾}) ∘𝑓 · 𝑌)) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))))
96 ofnegsub 10861 . . . . . . . . . . . . 13 ((𝑆 ∈ {ℝ, ℂ} ∧ ((𝑆 × {𝐾}) ∘𝑓 · 𝑌):𝑆⟶ℂ ∧ ((𝑆 × {𝐾}) ∘𝑓 · 𝑌):𝑆⟶ℂ) → (((𝑆 × {𝐾}) ∘𝑓 · 𝑌) ∘𝑓 + ((𝑆 × {-1}) ∘𝑓 · ((𝑆 × {𝐾}) ∘𝑓 · 𝑌))) = (((𝑆 × {𝐾}) ∘𝑓 · 𝑌) ∘𝑓 − ((𝑆 × {𝐾}) ∘𝑓 · 𝑌)))
971, 88, 88, 96syl3anc 1317 . . . . . . . . . . . 12 (𝜑 → (((𝑆 × {𝐾}) ∘𝑓 · 𝑌) ∘𝑓 + ((𝑆 × {-1}) ∘𝑓 · ((𝑆 × {𝐾}) ∘𝑓 · 𝑌))) = (((𝑆 × {𝐾}) ∘𝑓 · 𝑌) ∘𝑓 − ((𝑆 × {𝐾}) ∘𝑓 · 𝑌)))
98 neg1cn 10967 . . . . . . . . . . . . . . . . 17 -1 ∈ ℂ
9998fconst6 5989 . . . . . . . . . . . . . . . 16 (𝑆 × {-1}):𝑆⟶ℂ
10099a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → (𝑆 × {-1}):𝑆⟶ℂ)
1011, 100, 86, 38, 77caofass 6802 . . . . . . . . . . . . . 14 (𝜑 → (((𝑆 × {-1}) ∘𝑓 · (𝑆 × {𝐾})) ∘𝑓 · 𝑌) = ((𝑆 × {-1}) ∘𝑓 · ((𝑆 × {𝐾}) ∘𝑓 · 𝑌)))
10298a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → -1 ∈ ℂ)
1031, 102, 4ofc12 6793 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑆 × {-1}) ∘𝑓 · (𝑆 × {𝐾})) = (𝑆 × {(-1 · 𝐾)}))
1044mulm1d 10328 . . . . . . . . . . . . . . . . . 18 (𝜑 → (-1 · 𝐾) = -𝐾)
105104sneqd 4132 . . . . . . . . . . . . . . . . 17 (𝜑 → {(-1 · 𝐾)} = {-𝐾})
106105xpeq2d 5049 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑆 × {(-1 · 𝐾)}) = (𝑆 × {-𝐾}))
107103, 106eqtrd 2639 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑆 × {-1}) ∘𝑓 · (𝑆 × {𝐾})) = (𝑆 × {-𝐾}))
108107oveq1d 6538 . . . . . . . . . . . . . 14 (𝜑 → (((𝑆 × {-1}) ∘𝑓 · (𝑆 × {𝐾})) ∘𝑓 · 𝑌) = ((𝑆 × {-𝐾}) ∘𝑓 · 𝑌))
109101, 108eqtr3d 2641 . . . . . . . . . . . . 13 (𝜑 → ((𝑆 × {-1}) ∘𝑓 · ((𝑆 × {𝐾}) ∘𝑓 · 𝑌)) = ((𝑆 × {-𝐾}) ∘𝑓 · 𝑌))
110109oveq2d 6539 . . . . . . . . . . . 12 (𝜑 → (((𝑆 × {𝐾}) ∘𝑓 · 𝑌) ∘𝑓 + ((𝑆 × {-1}) ∘𝑓 · ((𝑆 × {𝐾}) ∘𝑓 · 𝑌))) = (((𝑆 × {𝐾}) ∘𝑓 · 𝑌) ∘𝑓 + ((𝑆 × {-𝐾}) ∘𝑓 · 𝑌)))
111 ofsubid 37344 . . . . . . . . . . . . 13 ((𝑆 ∈ {ℝ, ℂ} ∧ ((𝑆 × {𝐾}) ∘𝑓 · 𝑌):𝑆⟶ℂ) → (((𝑆 × {𝐾}) ∘𝑓 · 𝑌) ∘𝑓 − ((𝑆 × {𝐾}) ∘𝑓 · 𝑌)) = (𝑆 × {0}))
1121, 88, 111syl2anc 690 . . . . . . . . . . . 12 (𝜑 → (((𝑆 × {𝐾}) ∘𝑓 · 𝑌) ∘𝑓 − ((𝑆 × {𝐾}) ∘𝑓 · 𝑌)) = (𝑆 × {0}))
11397, 110, 1123eqtr3d 2647 . . . . . . . . . . 11 (𝜑 → (((𝑆 × {𝐾}) ∘𝑓 · 𝑌) ∘𝑓 + ((𝑆 × {-𝐾}) ∘𝑓 · 𝑌)) = (𝑆 × {0}))
114113oveq1d 6538 . . . . . . . . . 10 (𝜑 → ((((𝑆 × {𝐾}) ∘𝑓 · 𝑌) ∘𝑓 + ((𝑆 × {-𝐾}) ∘𝑓 · 𝑌)) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = ((𝑆 × {0}) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))))
115114eqeq2d 2615 . . . . . . . . 9 (𝜑 → ((𝑆 D (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((((𝑆 × {𝐾}) ∘𝑓 · 𝑌) ∘𝑓 + ((𝑆 × {-𝐾}) ∘𝑓 · 𝑌)) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ↔ (𝑆 D (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((𝑆 × {0}) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))))
116115adantr 479 . . . . . . . 8 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘𝑓 · 𝑌)) → ((𝑆 D (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((((𝑆 × {𝐾}) ∘𝑓 · 𝑌) ∘𝑓 + ((𝑆 × {-𝐾}) ∘𝑓 · 𝑌)) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ↔ (𝑆 D (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((𝑆 × {0}) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))))
11795, 116mpbid 220 . . . . . . 7 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘𝑓 · 𝑌)) → (𝑆 D (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((𝑆 × {0}) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))))
118 0cnd 9885 . . . . . . . . 9 (𝜑 → 0 ∈ ℂ)
119 mul02 10061 . . . . . . . . . 10 (𝑥 ∈ ℂ → (0 · 𝑥) = 0)
120119adantl 480 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ) → (0 · 𝑥) = 0)
1211, 54, 118, 118, 120caofid2 6799 . . . . . . . 8 (𝜑 → ((𝑆 × {0}) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = (𝑆 × {0}))
122121adantr 479 . . . . . . 7 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘𝑓 · 𝑌)) → ((𝑆 × {0}) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = (𝑆 × {0}))
123117, 122eqtrd 2639 . . . . . 6 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘𝑓 · 𝑌)) → (𝑆 D (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = (𝑆 × {0}))
1241adantr 479 . . . . . . 7 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘𝑓 · 𝑌)) → 𝑆 ∈ {ℝ, ℂ})
12584, 38, 54, 1, 1, 87off 6783 . . . . . . . 8 (𝜑 → (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))):𝑆⟶ℂ)
126125adantr 479 . . . . . . 7 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘𝑓 · 𝑌)) → (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))):𝑆⟶ℂ)
127123dmeqd 5231 . . . . . . . 8 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘𝑓 · 𝑌)) → dom (𝑆 D (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = dom (𝑆 × {0}))
128 0cn 9884 . . . . . . . . . 10 0 ∈ ℂ
129128fconst6 5989 . . . . . . . . 9 (𝑆 × {0}):𝑆⟶ℂ
130129fdmi 5947 . . . . . . . 8 dom (𝑆 × {0}) = 𝑆
131127, 130syl6eq 2655 . . . . . . 7 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘𝑓 · 𝑌)) → dom (𝑆 D (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = 𝑆)
132124, 126, 131dvconstbi 37354 . . . . . 6 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘𝑓 · 𝑌)) → ((𝑆 D (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = (𝑆 × {0}) ↔ ∃𝑥 ∈ ℂ (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = (𝑆 × {𝑥})))
133123, 132mpbid 220 . . . . 5 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘𝑓 · 𝑌)) → ∃𝑥 ∈ ℂ (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = (𝑆 × {𝑥}))
134 oveq1 6530 . . . . . . . . . 10 ((𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = (𝑆 × {𝑥}) → ((𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘𝑓 / (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = ((𝑆 × {𝑥}) ∘𝑓 / (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))))
135 efne0 14608 . . . . . . . . . . . . . . 15 (-(𝐾 · 𝑢) ∈ ℂ → (exp‘-(𝐾 · 𝑢)) ≠ 0)
136 eldifsn 4255 . . . . . . . . . . . . . . 15 ((exp‘-(𝐾 · 𝑢)) ∈ (ℂ ∖ {0}) ↔ ((exp‘-(𝐾 · 𝑢)) ∈ ℂ ∧ (exp‘-(𝐾 · 𝑢)) ≠ 0))
13739, 135, 136sylanbrc 694 . . . . . . . . . . . . . 14 (-(𝐾 · 𝑢) ∈ ℂ → (exp‘-(𝐾 · 𝑢)) ∈ (ℂ ∖ {0}))
13811, 137syl 17 . . . . . . . . . . . . 13 ((𝜑𝑢𝑆) → (exp‘-(𝐾 · 𝑢)) ∈ (ℂ ∖ {0}))
139138, 53fmptd 6273 . . . . . . . . . . . 12 (𝜑 → (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))):𝑆⟶(ℂ ∖ {0}))
140 ofdivcan4 37347 . . . . . . . . . . . 12 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝑌:𝑆⟶ℂ ∧ (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))):𝑆⟶(ℂ ∖ {0})) → ((𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘𝑓 / (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = 𝑌)
1411, 38, 139, 140syl3anc 1317 . . . . . . . . . . 11 (𝜑 → ((𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘𝑓 / (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = 𝑌)
142141eqeq1d 2607 . . . . . . . . . 10 (𝜑 → (((𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘𝑓 / (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = ((𝑆 × {𝑥}) ∘𝑓 / (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ↔ 𝑌 = ((𝑆 × {𝑥}) ∘𝑓 / (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))))
143134, 142syl5ib 232 . . . . . . . . 9 (𝜑 → ((𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = (𝑆 × {𝑥}) → 𝑌 = ((𝑆 × {𝑥}) ∘𝑓 / (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))))
144143adantr 479 . . . . . . . 8 ((𝜑𝑥 ∈ ℂ) → ((𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = (𝑆 × {𝑥}) → 𝑌 = ((𝑆 × {𝑥}) ∘𝑓 / (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))))
145 vex 3171 . . . . . . . . . . . . 13 𝑥 ∈ V
146145a1i 11 . . . . . . . . . . . 12 ((𝜑𝑢𝑆) → 𝑥 ∈ V)
147 ovex 6551 . . . . . . . . . . . . 13 (1 / (exp‘(𝐾 · 𝑢))) ∈ V
148147a1i 11 . . . . . . . . . . . 12 ((𝜑𝑢𝑆) → (1 / (exp‘(𝐾 · 𝑢))) ∈ V)
149 fconstmpt 5071 . . . . . . . . . . . . 13 (𝑆 × {𝑥}) = (𝑢𝑆𝑥)
150149a1i 11 . . . . . . . . . . . 12 (𝜑 → (𝑆 × {𝑥}) = (𝑢𝑆𝑥))
151 efneg 14609 . . . . . . . . . . . . . 14 ((𝐾 · 𝑢) ∈ ℂ → (exp‘-(𝐾 · 𝑢)) = (1 / (exp‘(𝐾 · 𝑢))))
15210, 151syl 17 . . . . . . . . . . . . 13 ((𝜑𝑢𝑆) → (exp‘-(𝐾 · 𝑢)) = (1 / (exp‘(𝐾 · 𝑢))))
153152mpteq2dva 4662 . . . . . . . . . . . 12 (𝜑 → (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))) = (𝑢𝑆 ↦ (1 / (exp‘(𝐾 · 𝑢)))))
1541, 146, 148, 150, 153offval2 6785 . . . . . . . . . . 11 (𝜑 → ((𝑆 × {𝑥}) ∘𝑓 / (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = (𝑢𝑆 ↦ (𝑥 / (1 / (exp‘(𝐾 · 𝑢))))))
155154adantr 479 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℂ) → ((𝑆 × {𝑥}) ∘𝑓 / (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = (𝑢𝑆 ↦ (𝑥 / (1 / (exp‘(𝐾 · 𝑢))))))
156 efcl 14594 . . . . . . . . . . . . . . . . 17 ((𝐾 · 𝑢) ∈ ℂ → (exp‘(𝐾 · 𝑢)) ∈ ℂ)
157 efne0 14608 . . . . . . . . . . . . . . . . 17 ((𝐾 · 𝑢) ∈ ℂ → (exp‘(𝐾 · 𝑢)) ≠ 0)
158156, 157jca 552 . . . . . . . . . . . . . . . 16 ((𝐾 · 𝑢) ∈ ℂ → ((exp‘(𝐾 · 𝑢)) ∈ ℂ ∧ (exp‘(𝐾 · 𝑢)) ≠ 0))
15910, 158syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑢𝑆) → ((exp‘(𝐾 · 𝑢)) ∈ ℂ ∧ (exp‘(𝐾 · 𝑢)) ≠ 0))
160 ax-1ne0 9857 . . . . . . . . . . . . . . . . 17 1 ≠ 0
16118, 160pm3.2i 469 . . . . . . . . . . . . . . . 16 (1 ∈ ℂ ∧ 1 ≠ 0)
162 divdiv2 10582 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℂ ∧ (1 ∈ ℂ ∧ 1 ≠ 0) ∧ ((exp‘(𝐾 · 𝑢)) ∈ ℂ ∧ (exp‘(𝐾 · 𝑢)) ≠ 0)) → (𝑥 / (1 / (exp‘(𝐾 · 𝑢)))) = ((𝑥 · (exp‘(𝐾 · 𝑢))) / 1))
163161, 162mp3an2 1403 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℂ ∧ ((exp‘(𝐾 · 𝑢)) ∈ ℂ ∧ (exp‘(𝐾 · 𝑢)) ≠ 0)) → (𝑥 / (1 / (exp‘(𝐾 · 𝑢)))) = ((𝑥 · (exp‘(𝐾 · 𝑢))) / 1))
164159, 163sylan2 489 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℂ ∧ (𝜑𝑢𝑆)) → (𝑥 / (1 / (exp‘(𝐾 · 𝑢)))) = ((𝑥 · (exp‘(𝐾 · 𝑢))) / 1))
16510, 156syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑢𝑆) → (exp‘(𝐾 · 𝑢)) ∈ ℂ)
166 mulcl 9872 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℂ ∧ (exp‘(𝐾 · 𝑢)) ∈ ℂ) → (𝑥 · (exp‘(𝐾 · 𝑢))) ∈ ℂ)
167165, 166sylan2 489 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℂ ∧ (𝜑𝑢𝑆)) → (𝑥 · (exp‘(𝐾 · 𝑢))) ∈ ℂ)
168167div1d 10638 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℂ ∧ (𝜑𝑢𝑆)) → ((𝑥 · (exp‘(𝐾 · 𝑢))) / 1) = (𝑥 · (exp‘(𝐾 · 𝑢))))
169164, 168eqtrd 2639 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ (𝜑𝑢𝑆)) → (𝑥 / (1 / (exp‘(𝐾 · 𝑢)))) = (𝑥 · (exp‘(𝐾 · 𝑢))))
170169ancoms 467 . . . . . . . . . . . 12 (((𝜑𝑢𝑆) ∧ 𝑥 ∈ ℂ) → (𝑥 / (1 / (exp‘(𝐾 · 𝑢)))) = (𝑥 · (exp‘(𝐾 · 𝑢))))
171170an32s 841 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℂ) ∧ 𝑢𝑆) → (𝑥 / (1 / (exp‘(𝐾 · 𝑢)))) = (𝑥 · (exp‘(𝐾 · 𝑢))))
172171mpteq2dva 4662 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℂ) → (𝑢𝑆 ↦ (𝑥 / (1 / (exp‘(𝐾 · 𝑢))))) = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))))
173155, 172eqtrd 2639 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ) → ((𝑆 × {𝑥}) ∘𝑓 / (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))))
174173eqeq2d 2615 . . . . . . . 8 ((𝜑𝑥 ∈ ℂ) → (𝑌 = ((𝑆 × {𝑥}) ∘𝑓 / (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ↔ 𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))))
175144, 174sylibd 227 . . . . . . 7 ((𝜑𝑥 ∈ ℂ) → ((𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = (𝑆 × {𝑥}) → 𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))))
176175reximdva 2995 . . . . . 6 (𝜑 → (∃𝑥 ∈ ℂ (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = (𝑆 × {𝑥}) → ∃𝑥 ∈ ℂ 𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))))
177176adantr 479 . . . . 5 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘𝑓 · 𝑌)) → (∃𝑥 ∈ ℂ (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = (𝑆 × {𝑥}) → ∃𝑥 ∈ ℂ 𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))))
178133, 177mpd 15 . . . 4 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘𝑓 · 𝑌)) → ∃𝑥 ∈ ℂ 𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))))
179178ex 448 . . 3 (𝜑 → ((𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘𝑓 · 𝑌) → ∃𝑥 ∈ ℂ 𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))))
1801adantr 479 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))))) → 𝑆 ∈ {ℝ, ℂ})
1814adantr 479 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))))) → 𝐾 ∈ ℂ)
182 simprl 789 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))))) → 𝑥 ∈ ℂ)
183 eqid 2605 . . . . . . 7 (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))) = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))
184180, 181, 182, 183expgrowthi 37353 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))))) → (𝑆 D (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))) = ((𝑆 × {𝐾}) ∘𝑓 · (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))))
1851843impb 1251 . . . . 5 ((𝜑𝑥 ∈ ℂ ∧ 𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))) → (𝑆 D (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))) = ((𝑆 × {𝐾}) ∘𝑓 · (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))))
186 oveq2 6531 . . . . . . 7 (𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))) → (𝑆 D 𝑌) = (𝑆 D (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))))
187 oveq2 6531 . . . . . . 7 (𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))) → ((𝑆 × {𝐾}) ∘𝑓 · 𝑌) = ((𝑆 × {𝐾}) ∘𝑓 · (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))))
188186, 187eqeq12d 2620 . . . . . 6 (𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))) → ((𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘𝑓 · 𝑌) ↔ (𝑆 D (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))) = ((𝑆 × {𝐾}) ∘𝑓 · (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))))))
1891883ad2ant3 1076 . . . . 5 ((𝜑𝑥 ∈ ℂ ∧ 𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))) → ((𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘𝑓 · 𝑌) ↔ (𝑆 D (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))) = ((𝑆 × {𝐾}) ∘𝑓 · (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))))))
190185, 189mpbird 245 . . . 4 ((𝜑𝑥 ∈ ℂ ∧ 𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))) → (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘𝑓 · 𝑌))
191190rexlimdv3a 3010 . . 3 (𝜑 → (∃𝑥 ∈ ℂ 𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))) → (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘𝑓 · 𝑌)))
192179, 191impbid 200 . 2 (𝜑 → ((𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘𝑓 · 𝑌) ↔ ∃𝑥 ∈ ℂ 𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))))
193 oveq2 6531 . . . . . . . 8 (𝑢 = 𝑡 → (𝐾 · 𝑢) = (𝐾 · 𝑡))
194193fveq2d 6088 . . . . . . 7 (𝑢 = 𝑡 → (exp‘(𝐾 · 𝑢)) = (exp‘(𝐾 · 𝑡)))
195194oveq2d 6539 . . . . . 6 (𝑢 = 𝑡 → (𝑥 · (exp‘(𝐾 · 𝑢))) = (𝑥 · (exp‘(𝐾 · 𝑡))))
196195cbvmptv 4668 . . . . 5 (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))) = (𝑡𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑡))))
197 oveq1 6530 . . . . . 6 (𝑥 = 𝑐 → (𝑥 · (exp‘(𝐾 · 𝑡))) = (𝑐 · (exp‘(𝐾 · 𝑡))))
198197mpteq2dv 4663 . . . . 5 (𝑥 = 𝑐 → (𝑡𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑡)))) = (𝑡𝑆 ↦ (𝑐 · (exp‘(𝐾 · 𝑡)))))
199196, 198syl5eq 2651 . . . 4 (𝑥 = 𝑐 → (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))) = (𝑡𝑆 ↦ (𝑐 · (exp‘(𝐾 · 𝑡)))))
200199eqeq2d 2615 . . 3 (𝑥 = 𝑐 → (𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))) ↔ 𝑌 = (𝑡𝑆 ↦ (𝑐 · (exp‘(𝐾 · 𝑡))))))
201200cbvrexv 3143 . 2 (∃𝑥 ∈ ℂ 𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))) ↔ ∃𝑐 ∈ ℂ 𝑌 = (𝑡𝑆 ↦ (𝑐 · (exp‘(𝐾 · 𝑡)))))
202192, 201syl6bb 274 1 (𝜑 → ((𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘𝑓 · 𝑌) ↔ ∃𝑐 ∈ ℂ 𝑌 = (𝑡𝑆 ↦ (𝑐 · (exp‘(𝐾 · 𝑡))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382  w3a 1030   = wceq 1474  wcel 1975  wne 2775  wrex 2892  Vcvv 3168  cdif 3532  wss 3535  {csn 4120  {cpr 4122  cmpt 4633   × cxp 5022  dom cdm 5024   Fn wfn 5781  wf 5782  cfv 5786  (class class class)co 6523  𝑓 cof 6766  cc 9786  cr 9787  0cc0 9788  1c1 9789   + caddc 9791   · cmul 9793  cmin 10113  -cneg 10114   / cdiv 10529  expce 14573   D cdv 23346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-8 1977  ax-9 1984  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2228  ax-ext 2585  ax-rep 4689  ax-sep 4699  ax-nul 4708  ax-pow 4760  ax-pr 4824  ax-un 6820  ax-inf2 8394  ax-cnex 9844  ax-resscn 9845  ax-1cn 9846  ax-icn 9847  ax-addcl 9848  ax-addrcl 9849  ax-mulcl 9850  ax-mulrcl 9851  ax-mulcom 9852  ax-addass 9853  ax-mulass 9854  ax-distr 9855  ax-i2m1 9856  ax-1ne0 9857  ax-1rid 9858  ax-rnegex 9859  ax-rrecex 9860  ax-cnre 9861  ax-pre-lttri 9862  ax-pre-lttrn 9863  ax-pre-ltadd 9864  ax-pre-mulgt0 9865  ax-pre-sup 9866  ax-addf 9867  ax-mulf 9868
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1866  df-eu 2457  df-mo 2458  df-clab 2592  df-cleq 2598  df-clel 2601  df-nfc 2735  df-ne 2777  df-nel 2778  df-ral 2896  df-rex 2897  df-reu 2898  df-rmo 2899  df-rab 2900  df-v 3170  df-sbc 3398  df-csb 3495  df-dif 3538  df-un 3540  df-in 3542  df-ss 3549  df-pss 3551  df-nul 3870  df-if 4032  df-pw 4105  df-sn 4121  df-pr 4123  df-tp 4125  df-op 4127  df-uni 4363  df-int 4401  df-iun 4447  df-iin 4448  df-br 4574  df-opab 4634  df-mpt 4635  df-tr 4671  df-eprel 4935  df-id 4939  df-po 4945  df-so 4946  df-fr 4983  df-se 4984  df-we 4985  df-xp 5030  df-rel 5031  df-cnv 5032  df-co 5033  df-dm 5034  df-rn 5035  df-res 5036  df-ima 5037  df-pred 5579  df-ord 5625  df-on 5626  df-lim 5627  df-suc 5628  df-iota 5750  df-fun 5788  df-fn 5789  df-f 5790  df-f1 5791  df-fo 5792  df-f1o 5793  df-fv 5794  df-isom 5795  df-riota 6485  df-ov 6526  df-oprab 6527  df-mpt2 6528  df-of 6768  df-om 6931  df-1st 7032  df-2nd 7033  df-supp 7156  df-wrecs 7267  df-recs 7328  df-rdg 7366  df-1o 7420  df-2o 7421  df-oadd 7424  df-er 7602  df-map 7719  df-pm 7720  df-ixp 7768  df-en 7815  df-dom 7816  df-sdom 7817  df-fin 7818  df-fsupp 8132  df-fi 8173  df-sup 8204  df-inf 8205  df-oi 8271  df-card 8621  df-cda 8846  df-pnf 9928  df-mnf 9929  df-xr 9930  df-ltxr 9931  df-le 9932  df-sub 10115  df-neg 10116  df-div 10530  df-nn 10864  df-2 10922  df-3 10923  df-4 10924  df-5 10925  df-6 10926  df-7 10927  df-8 10928  df-9 10929  df-n0 11136  df-z 11207  df-dec 11322  df-uz 11516  df-q 11617  df-rp 11661  df-xneg 11774  df-xadd 11775  df-xmul 11776  df-ioo 12002  df-ico 12004  df-icc 12005  df-fz 12149  df-fzo 12286  df-fl 12406  df-seq 12615  df-exp 12674  df-fac 12874  df-bc 12903  df-hash 12931  df-shft 13597  df-cj 13629  df-re 13630  df-im 13631  df-sqrt 13765  df-abs 13766  df-limsup 13992  df-clim 14009  df-rlim 14010  df-sum 14207  df-ef 14579  df-struct 15639  df-ndx 15640  df-slot 15641  df-base 15642  df-sets 15643  df-ress 15644  df-plusg 15723  df-mulr 15724  df-starv 15725  df-sca 15726  df-vsca 15727  df-ip 15728  df-tset 15729  df-ple 15730  df-ds 15733  df-unif 15734  df-hom 15735  df-cco 15736  df-rest 15848  df-topn 15849  df-0g 15867  df-gsum 15868  df-topgen 15869  df-pt 15870  df-prds 15873  df-xrs 15927  df-qtop 15932  df-imas 15933  df-xps 15935  df-mre 16011  df-mrc 16012  df-acs 16014  df-mgm 17007  df-sgrp 17049  df-mnd 17060  df-submnd 17101  df-mulg 17306  df-cntz 17515  df-cmn 17960  df-psmet 19501  df-xmet 19502  df-met 19503  df-bl 19504  df-mopn 19505  df-fbas 19506  df-fg 19507  df-cnfld 19510  df-top 20459  df-bases 20460  df-topon 20461  df-topsp 20462  df-cld 20571  df-ntr 20572  df-cls 20573  df-nei 20650  df-lp 20688  df-perf 20689  df-cn 20779  df-cnp 20780  df-haus 20867  df-cmp 20938  df-tx 21113  df-hmeo 21306  df-fil 21398  df-fm 21490  df-flim 21491  df-flf 21492  df-xms 21872  df-ms 21873  df-tms 21874  df-cncf 22416  df-limc 23349  df-dv 23350
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator