Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  expgrowth Structured version   Visualization version   GIF version

Theorem expgrowth 40660
Description: Exponential growth and decay model. The derivative of a function y of variable t equals a constant k times y itself, iff y equals some constant C times the exponential of kt. This theorem and expgrowthi 40658 illustrate one of the simplest and most crucial classes of differential equations, equations that relate functions to their derivatives.

Section 6.3 of [Strang] p. 242 calls y' = ky "the most important differential equation in applied mathematics". In the field of population ecology it is known as the Malthusian growth model or exponential law, and C, k, and t correspond to initial population size, growth rate, and time respectively (https://en.wikipedia.org/wiki/Malthusian_growth_model 40658); and in finance, the model appears in a similar role in continuous compounding with C as the initial amount of money. In exponential decay models, k is often expressed as the negative of a positive constant λ.

Here y' is given as (𝑆 D 𝑌), C as 𝑐, and ky as ((𝑆 × {𝐾}) ∘f · 𝑌). (𝑆 × {𝐾}) is the constant function that maps any real or complex input to k and f · is multiplication as a function operation.

The leftward direction of the biconditional is as given in http://www.saylor.org/site/wp-content/uploads/2011/06/MA221-2.1.1.pdf 40658 pp. 1-2, which also notes the reverse direction ("While we will not prove this here, it turns out that these are the only functions that satisfy this equation."). The rightward direction is Theorem 5.1 of [LarsonHostetlerEdwards] p. 375 (which notes " C is the initial value of y, and k is the proportionality constant. Exponential growth occurs when k > 0, and exponential decay occurs when k < 0."); its proof here closely follows the proof of y' = y in https://proofwiki.org/wiki/Exponential_Growth_Equation/Special_Case 40658.

Statements for this and expgrowthi 40658 formulated by Mario Carneiro. (Contributed by Steve Rodriguez, 24-Nov-2015.)

Hypotheses
Ref Expression
expgrowth.s (𝜑𝑆 ∈ {ℝ, ℂ})
expgrowth.k (𝜑𝐾 ∈ ℂ)
expgrowth.y (𝜑𝑌:𝑆⟶ℂ)
expgrowth.dy (𝜑 → dom (𝑆 D 𝑌) = 𝑆)
Assertion
Ref Expression
expgrowth (𝜑 → ((𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌) ↔ ∃𝑐 ∈ ℂ 𝑌 = (𝑡𝑆 ↦ (𝑐 · (exp‘(𝐾 · 𝑡))))))
Distinct variable groups:   𝑡,𝑐,𝐾   𝑆,𝑐,𝑡   𝑌,𝑐
Allowed substitution hints:   𝜑(𝑡,𝑐)   𝑌(𝑡)

Proof of Theorem expgrowth
Dummy variables 𝑢 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 expgrowth.s . . . . . . . . . . . . . . . . 17 (𝜑𝑆 ∈ {ℝ, ℂ})
2 cnelprrecn 10624 . . . . . . . . . . . . . . . . . 18 ℂ ∈ {ℝ, ℂ}
32a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → ℂ ∈ {ℝ, ℂ})
4 expgrowth.k . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐾 ∈ ℂ)
5 recnprss 24496 . . . . . . . . . . . . . . . . . . . . . 22 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
61, 5syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑆 ⊆ ℂ)
76sseld 3965 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑢𝑆𝑢 ∈ ℂ))
8 mulcl 10615 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 ∈ ℂ ∧ 𝑢 ∈ ℂ) → (𝐾 · 𝑢) ∈ ℂ)
94, 7, 8syl6an 682 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑢𝑆 → (𝐾 · 𝑢) ∈ ℂ))
109imp 409 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑢𝑆) → (𝐾 · 𝑢) ∈ ℂ)
1110negcld 10978 . . . . . . . . . . . . . . . . 17 ((𝜑𝑢𝑆) → -(𝐾 · 𝑢) ∈ ℂ)
124negcld 10978 . . . . . . . . . . . . . . . . . 18 (𝜑 → -𝐾 ∈ ℂ)
1312adantr 483 . . . . . . . . . . . . . . . . 17 ((𝜑𝑢𝑆) → -𝐾 ∈ ℂ)
14 efcl 15430 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ℂ → (exp‘𝑦) ∈ ℂ)
1514adantl 484 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ ℂ) → (exp‘𝑦) ∈ ℂ)
164adantr 483 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑢𝑆) → 𝐾 ∈ ℂ)
177imp 409 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑢𝑆) → 𝑢 ∈ ℂ)
18 ax-1cn 10589 . . . . . . . . . . . . . . . . . . . . 21 1 ∈ ℂ
1918a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑢𝑆) → 1 ∈ ℂ)
201dvmptid 24548 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑆 D (𝑢𝑆𝑢)) = (𝑢𝑆 ↦ 1))
211, 17, 19, 20, 4dvmptcmul 24555 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑆 D (𝑢𝑆 ↦ (𝐾 · 𝑢))) = (𝑢𝑆 ↦ (𝐾 · 1)))
224mulid1d 10652 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐾 · 1) = 𝐾)
2322mpteq2dv 5154 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑢𝑆 ↦ (𝐾 · 1)) = (𝑢𝑆𝐾))
2421, 23eqtrd 2856 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑆 D (𝑢𝑆 ↦ (𝐾 · 𝑢))) = (𝑢𝑆𝐾))
251, 10, 16, 24dvmptneg 24557 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑆 D (𝑢𝑆 ↦ -(𝐾 · 𝑢))) = (𝑢𝑆 ↦ -𝐾))
26 dvef 24571 . . . . . . . . . . . . . . . . . . 19 (ℂ D exp) = exp
27 eff 15429 . . . . . . . . . . . . . . . . . . . . . 22 exp:ℂ⟶ℂ
28 ffn 6508 . . . . . . . . . . . . . . . . . . . . . 22 (exp:ℂ⟶ℂ → exp Fn ℂ)
2927, 28ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 exp Fn ℂ
30 dffn5 6718 . . . . . . . . . . . . . . . . . . . . 21 (exp Fn ℂ ↔ exp = (𝑦 ∈ ℂ ↦ (exp‘𝑦)))
3129, 30mpbi 232 . . . . . . . . . . . . . . . . . . . 20 exp = (𝑦 ∈ ℂ ↦ (exp‘𝑦))
3231oveq2i 7161 . . . . . . . . . . . . . . . . . . 19 (ℂ D exp) = (ℂ D (𝑦 ∈ ℂ ↦ (exp‘𝑦)))
3326, 32, 313eqtr3i 2852 . . . . . . . . . . . . . . . . . 18 (ℂ D (𝑦 ∈ ℂ ↦ (exp‘𝑦))) = (𝑦 ∈ ℂ ↦ (exp‘𝑦))
3433a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ (exp‘𝑦))) = (𝑦 ∈ ℂ ↦ (exp‘𝑦)))
35 fveq2 6664 . . . . . . . . . . . . . . . . 17 (𝑦 = -(𝐾 · 𝑢) → (exp‘𝑦) = (exp‘-(𝐾 · 𝑢)))
361, 3, 11, 13, 15, 15, 25, 34, 35, 35dvmptco 24563 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑆 D (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = (𝑢𝑆 ↦ ((exp‘-(𝐾 · 𝑢)) · -𝐾)))
3736oveq2d 7166 . . . . . . . . . . . . . . 15 (𝜑 → (𝑌f · (𝑆 D (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = (𝑌f · (𝑢𝑆 ↦ ((exp‘-(𝐾 · 𝑢)) · -𝐾))))
38 expgrowth.y . . . . . . . . . . . . . . . 16 (𝜑𝑌:𝑆⟶ℂ)
39 efcl 15430 . . . . . . . . . . . . . . . . . . . 20 (-(𝐾 · 𝑢) ∈ ℂ → (exp‘-(𝐾 · 𝑢)) ∈ ℂ)
4011, 39syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑢𝑆) → (exp‘-(𝐾 · 𝑢)) ∈ ℂ)
4140, 13mulcld 10655 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑢𝑆) → ((exp‘-(𝐾 · 𝑢)) · -𝐾) ∈ ℂ)
4241fmpttd 6873 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑢𝑆 ↦ ((exp‘-(𝐾 · 𝑢)) · -𝐾)):𝑆⟶ℂ)
4336feq1d 6493 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑆 D (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))):𝑆⟶ℂ ↔ (𝑢𝑆 ↦ ((exp‘-(𝐾 · 𝑢)) · -𝐾)):𝑆⟶ℂ))
4442, 43mpbird 259 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑆 D (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))):𝑆⟶ℂ)
45 mulcom 10617 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) = (𝑦 · 𝑥))
4645adantl 484 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 · 𝑦) = (𝑦 · 𝑥))
471, 38, 44, 46caofcom 7435 . . . . . . . . . . . . . . 15 (𝜑 → (𝑌f · (𝑆 D (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((𝑆 D (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f · 𝑌))
4837, 47eqtr3d 2858 . . . . . . . . . . . . . 14 (𝜑 → (𝑌f · (𝑢𝑆 ↦ ((exp‘-(𝐾 · 𝑢)) · -𝐾))) = ((𝑆 D (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f · 𝑌))
4948oveq2d 7166 . . . . . . . . . . . . 13 (𝜑 → (((𝑆 D 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f + (𝑌f · (𝑢𝑆 ↦ ((exp‘-(𝐾 · 𝑢)) · -𝐾)))) = (((𝑆 D 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f + ((𝑆 D (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f · 𝑌)))
50 fconst6g 6562 . . . . . . . . . . . . . . . . . 18 (-𝐾 ∈ ℂ → (𝑆 × {-𝐾}):𝑆⟶ℂ)
5112, 50syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑆 × {-𝐾}):𝑆⟶ℂ)
5240fmpttd 6873 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))):𝑆⟶ℂ)
531, 51, 52, 46caofcom 7435 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑆 × {-𝐾}) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = ((𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))) ∘f · (𝑆 × {-𝐾})))
54 eqidd 2822 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))) = (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))
55 fconstmpt 5608 . . . . . . . . . . . . . . . . . 18 (𝑆 × {-𝐾}) = (𝑢𝑆 ↦ -𝐾)
5655a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑆 × {-𝐾}) = (𝑢𝑆 ↦ -𝐾))
571, 40, 13, 54, 56offval2 7420 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))) ∘f · (𝑆 × {-𝐾})) = (𝑢𝑆 ↦ ((exp‘-(𝐾 · 𝑢)) · -𝐾)))
5853, 57eqtrd 2856 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑆 × {-𝐾}) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = (𝑢𝑆 ↦ ((exp‘-(𝐾 · 𝑢)) · -𝐾)))
5958oveq2d 7166 . . . . . . . . . . . . . 14 (𝜑 → (𝑌f · ((𝑆 × {-𝐾}) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = (𝑌f · (𝑢𝑆 ↦ ((exp‘-(𝐾 · 𝑢)) · -𝐾))))
6059oveq2d 7166 . . . . . . . . . . . . 13 (𝜑 → (((𝑆 D 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f + (𝑌f · ((𝑆 × {-𝐾}) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))))) = (((𝑆 D 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f + (𝑌f · (𝑢𝑆 ↦ ((exp‘-(𝐾 · 𝑢)) · -𝐾)))))
61 expgrowth.dy . . . . . . . . . . . . . 14 (𝜑 → dom (𝑆 D 𝑌) = 𝑆)
6236dmeqd 5768 . . . . . . . . . . . . . . 15 (𝜑 → dom (𝑆 D (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = dom (𝑢𝑆 ↦ ((exp‘-(𝐾 · 𝑢)) · -𝐾)))
63 eqid 2821 . . . . . . . . . . . . . . . 16 (𝑢𝑆 ↦ ((exp‘-(𝐾 · 𝑢)) · -𝐾)) = (𝑢𝑆 ↦ ((exp‘-(𝐾 · 𝑢)) · -𝐾))
6463, 41dmmptd 6487 . . . . . . . . . . . . . . 15 (𝜑 → dom (𝑢𝑆 ↦ ((exp‘-(𝐾 · 𝑢)) · -𝐾)) = 𝑆)
6562, 64eqtrd 2856 . . . . . . . . . . . . . 14 (𝜑 → dom (𝑆 D (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = 𝑆)
661, 38, 52, 61, 65dvmulf 24534 . . . . . . . . . . . . 13 (𝜑 → (𝑆 D (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = (((𝑆 D 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f + ((𝑆 D (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f · 𝑌)))
6749, 60, 663eqtr4rd 2867 . . . . . . . . . . . 12 (𝜑 → (𝑆 D (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = (((𝑆 D 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f + (𝑌f · ((𝑆 × {-𝐾}) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))))))
68 ofmul12 40650 . . . . . . . . . . . . . 14 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝑌:𝑆⟶ℂ) ∧ ((𝑆 × {-𝐾}):𝑆⟶ℂ ∧ (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))):𝑆⟶ℂ)) → (𝑌f · ((𝑆 × {-𝐾}) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((𝑆 × {-𝐾}) ∘f · (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))))
691, 38, 51, 52, 68syl22anc 836 . . . . . . . . . . . . 13 (𝜑 → (𝑌f · ((𝑆 × {-𝐾}) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((𝑆 × {-𝐾}) ∘f · (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))))
7069oveq2d 7166 . . . . . . . . . . . 12 (𝜑 → (((𝑆 D 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f + (𝑌f · ((𝑆 × {-𝐾}) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))))) = (((𝑆 D 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f + ((𝑆 × {-𝐾}) ∘f · (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))))))
7167, 70eqtrd 2856 . . . . . . . . . . 11 (𝜑 → (𝑆 D (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = (((𝑆 D 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f + ((𝑆 × {-𝐾}) ∘f · (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))))))
72 oveq1 7157 . . . . . . . . . . . 12 ((𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌) → ((𝑆 D 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = (((𝑆 × {𝐾}) ∘f · 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))))
7372oveq1d 7165 . . . . . . . . . . 11 ((𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌) → (((𝑆 D 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f + ((𝑆 × {-𝐾}) ∘f · (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))))) = ((((𝑆 × {𝐾}) ∘f · 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f + ((𝑆 × {-𝐾}) ∘f · (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))))))
7471, 73sylan9eq 2876 . . . . . . . . . 10 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌)) → (𝑆 D (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((((𝑆 × {𝐾}) ∘f · 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f + ((𝑆 × {-𝐾}) ∘f · (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))))))
75 mulass 10619 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧)))
7675adantl 484 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧)))
771, 51, 38, 52, 76caofass 7437 . . . . . . . . . . . . 13 (𝜑 → (((𝑆 × {-𝐾}) ∘f · 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = ((𝑆 × {-𝐾}) ∘f · (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))))
7877oveq2d 7166 . . . . . . . . . . . 12 (𝜑 → ((((𝑆 × {𝐾}) ∘f · 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f + (((𝑆 × {-𝐾}) ∘f · 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((((𝑆 × {𝐾}) ∘f · 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f + ((𝑆 × {-𝐾}) ∘f · (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))))))
7978eqeq2d 2832 . . . . . . . . . . 11 (𝜑 → ((𝑆 D (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((((𝑆 × {𝐾}) ∘f · 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f + (((𝑆 × {-𝐾}) ∘f · 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) ↔ (𝑆 D (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((((𝑆 × {𝐾}) ∘f · 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f + ((𝑆 × {-𝐾}) ∘f · (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))))))
8079adantr 483 . . . . . . . . . 10 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌)) → ((𝑆 D (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((((𝑆 × {𝐾}) ∘f · 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f + (((𝑆 × {-𝐾}) ∘f · 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) ↔ (𝑆 D (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((((𝑆 × {𝐾}) ∘f · 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f + ((𝑆 × {-𝐾}) ∘f · (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))))))
8174, 80mpbird 259 . . . . . . . . 9 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌)) → (𝑆 D (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((((𝑆 × {𝐾}) ∘f · 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f + (((𝑆 × {-𝐾}) ∘f · 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))))
82 mulcl 10615 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ)
8382adantl 484 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 · 𝑦) ∈ ℂ)
84 fconst6g 6562 . . . . . . . . . . . . . 14 (𝐾 ∈ ℂ → (𝑆 × {𝐾}):𝑆⟶ℂ)
854, 84syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝑆 × {𝐾}):𝑆⟶ℂ)
86 inidm 4194 . . . . . . . . . . . . 13 (𝑆𝑆) = 𝑆
8783, 85, 38, 1, 1, 86off 7418 . . . . . . . . . . . 12 (𝜑 → ((𝑆 × {𝐾}) ∘f · 𝑌):𝑆⟶ℂ)
8883, 51, 38, 1, 1, 86off 7418 . . . . . . . . . . . 12 (𝜑 → ((𝑆 × {-𝐾}) ∘f · 𝑌):𝑆⟶ℂ)
89 adddir 10626 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))
9089adantl 484 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))
911, 52, 87, 88, 90caofdir 7440 . . . . . . . . . . 11 (𝜑 → ((((𝑆 × {𝐾}) ∘f · 𝑌) ∘f + ((𝑆 × {-𝐾}) ∘f · 𝑌)) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = ((((𝑆 × {𝐾}) ∘f · 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f + (((𝑆 × {-𝐾}) ∘f · 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))))
9291eqeq2d 2832 . . . . . . . . . 10 (𝜑 → ((𝑆 D (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((((𝑆 × {𝐾}) ∘f · 𝑌) ∘f + ((𝑆 × {-𝐾}) ∘f · 𝑌)) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ↔ (𝑆 D (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((((𝑆 × {𝐾}) ∘f · 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f + (((𝑆 × {-𝐾}) ∘f · 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))))))
9392adantr 483 . . . . . . . . 9 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌)) → ((𝑆 D (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((((𝑆 × {𝐾}) ∘f · 𝑌) ∘f + ((𝑆 × {-𝐾}) ∘f · 𝑌)) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ↔ (𝑆 D (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((((𝑆 × {𝐾}) ∘f · 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f + (((𝑆 × {-𝐾}) ∘f · 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))))))
9481, 93mpbird 259 . . . . . . . 8 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌)) → (𝑆 D (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((((𝑆 × {𝐾}) ∘f · 𝑌) ∘f + ((𝑆 × {-𝐾}) ∘f · 𝑌)) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))))
95 ofnegsub 11630 . . . . . . . . . . . . 13 ((𝑆 ∈ {ℝ, ℂ} ∧ ((𝑆 × {𝐾}) ∘f · 𝑌):𝑆⟶ℂ ∧ ((𝑆 × {𝐾}) ∘f · 𝑌):𝑆⟶ℂ) → (((𝑆 × {𝐾}) ∘f · 𝑌) ∘f + ((𝑆 × {-1}) ∘f · ((𝑆 × {𝐾}) ∘f · 𝑌))) = (((𝑆 × {𝐾}) ∘f · 𝑌) ∘f − ((𝑆 × {𝐾}) ∘f · 𝑌)))
961, 87, 87, 95syl3anc 1367 . . . . . . . . . . . 12 (𝜑 → (((𝑆 × {𝐾}) ∘f · 𝑌) ∘f + ((𝑆 × {-1}) ∘f · ((𝑆 × {𝐾}) ∘f · 𝑌))) = (((𝑆 × {𝐾}) ∘f · 𝑌) ∘f − ((𝑆 × {𝐾}) ∘f · 𝑌)))
97 neg1cn 11745 . . . . . . . . . . . . . . . . 17 -1 ∈ ℂ
9897fconst6 6563 . . . . . . . . . . . . . . . 16 (𝑆 × {-1}):𝑆⟶ℂ
9998a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → (𝑆 × {-1}):𝑆⟶ℂ)
1001, 99, 85, 38, 76caofass 7437 . . . . . . . . . . . . . 14 (𝜑 → (((𝑆 × {-1}) ∘f · (𝑆 × {𝐾})) ∘f · 𝑌) = ((𝑆 × {-1}) ∘f · ((𝑆 × {𝐾}) ∘f · 𝑌)))
10197a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → -1 ∈ ℂ)
1021, 101, 4ofc12 7428 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑆 × {-1}) ∘f · (𝑆 × {𝐾})) = (𝑆 × {(-1 · 𝐾)}))
1034mulm1d 11086 . . . . . . . . . . . . . . . . . 18 (𝜑 → (-1 · 𝐾) = -𝐾)
104103sneqd 4572 . . . . . . . . . . . . . . . . 17 (𝜑 → {(-1 · 𝐾)} = {-𝐾})
105104xpeq2d 5579 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑆 × {(-1 · 𝐾)}) = (𝑆 × {-𝐾}))
106102, 105eqtrd 2856 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑆 × {-1}) ∘f · (𝑆 × {𝐾})) = (𝑆 × {-𝐾}))
107106oveq1d 7165 . . . . . . . . . . . . . 14 (𝜑 → (((𝑆 × {-1}) ∘f · (𝑆 × {𝐾})) ∘f · 𝑌) = ((𝑆 × {-𝐾}) ∘f · 𝑌))
108100, 107eqtr3d 2858 . . . . . . . . . . . . 13 (𝜑 → ((𝑆 × {-1}) ∘f · ((𝑆 × {𝐾}) ∘f · 𝑌)) = ((𝑆 × {-𝐾}) ∘f · 𝑌))
109108oveq2d 7166 . . . . . . . . . . . 12 (𝜑 → (((𝑆 × {𝐾}) ∘f · 𝑌) ∘f + ((𝑆 × {-1}) ∘f · ((𝑆 × {𝐾}) ∘f · 𝑌))) = (((𝑆 × {𝐾}) ∘f · 𝑌) ∘f + ((𝑆 × {-𝐾}) ∘f · 𝑌)))
110 ofsubid 40649 . . . . . . . . . . . . 13 ((𝑆 ∈ {ℝ, ℂ} ∧ ((𝑆 × {𝐾}) ∘f · 𝑌):𝑆⟶ℂ) → (((𝑆 × {𝐾}) ∘f · 𝑌) ∘f − ((𝑆 × {𝐾}) ∘f · 𝑌)) = (𝑆 × {0}))
1111, 87, 110syl2anc 586 . . . . . . . . . . . 12 (𝜑 → (((𝑆 × {𝐾}) ∘f · 𝑌) ∘f − ((𝑆 × {𝐾}) ∘f · 𝑌)) = (𝑆 × {0}))
11296, 109, 1113eqtr3d 2864 . . . . . . . . . . 11 (𝜑 → (((𝑆 × {𝐾}) ∘f · 𝑌) ∘f + ((𝑆 × {-𝐾}) ∘f · 𝑌)) = (𝑆 × {0}))
113112oveq1d 7165 . . . . . . . . . 10 (𝜑 → ((((𝑆 × {𝐾}) ∘f · 𝑌) ∘f + ((𝑆 × {-𝐾}) ∘f · 𝑌)) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = ((𝑆 × {0}) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))))
114113eqeq2d 2832 . . . . . . . . 9 (𝜑 → ((𝑆 D (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((((𝑆 × {𝐾}) ∘f · 𝑌) ∘f + ((𝑆 × {-𝐾}) ∘f · 𝑌)) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ↔ (𝑆 D (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((𝑆 × {0}) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))))
115114adantr 483 . . . . . . . 8 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌)) → ((𝑆 D (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((((𝑆 × {𝐾}) ∘f · 𝑌) ∘f + ((𝑆 × {-𝐾}) ∘f · 𝑌)) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ↔ (𝑆 D (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((𝑆 × {0}) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))))
11694, 115mpbid 234 . . . . . . 7 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌)) → (𝑆 D (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((𝑆 × {0}) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))))
117 0cnd 10628 . . . . . . . . 9 (𝜑 → 0 ∈ ℂ)
118 mul02 10812 . . . . . . . . . 10 (𝑥 ∈ ℂ → (0 · 𝑥) = 0)
119118adantl 484 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ) → (0 · 𝑥) = 0)
1201, 52, 117, 117, 119caofid2 7434 . . . . . . . 8 (𝜑 → ((𝑆 × {0}) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = (𝑆 × {0}))
121120adantr 483 . . . . . . 7 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌)) → ((𝑆 × {0}) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = (𝑆 × {0}))
122116, 121eqtrd 2856 . . . . . 6 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌)) → (𝑆 D (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = (𝑆 × {0}))
1231adantr 483 . . . . . . 7 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌)) → 𝑆 ∈ {ℝ, ℂ})
12483, 38, 52, 1, 1, 86off 7418 . . . . . . . 8 (𝜑 → (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))):𝑆⟶ℂ)
125124adantr 483 . . . . . . 7 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌)) → (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))):𝑆⟶ℂ)
126122dmeqd 5768 . . . . . . . 8 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌)) → dom (𝑆 D (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = dom (𝑆 × {0}))
127 0cn 10627 . . . . . . . . . 10 0 ∈ ℂ
128127fconst6 6563 . . . . . . . . 9 (𝑆 × {0}):𝑆⟶ℂ
129128fdmi 6518 . . . . . . . 8 dom (𝑆 × {0}) = 𝑆
130126, 129syl6eq 2872 . . . . . . 7 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌)) → dom (𝑆 D (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = 𝑆)
131123, 125, 130dvconstbi 40659 . . . . . 6 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌)) → ((𝑆 D (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = (𝑆 × {0}) ↔ ∃𝑥 ∈ ℂ (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = (𝑆 × {𝑥})))
132122, 131mpbid 234 . . . . 5 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌)) → ∃𝑥 ∈ ℂ (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = (𝑆 × {𝑥}))
133 oveq1 7157 . . . . . . . . . 10 ((𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = (𝑆 × {𝑥}) → ((𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f / (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = ((𝑆 × {𝑥}) ∘f / (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))))
134 efne0 15444 . . . . . . . . . . . . . . 15 (-(𝐾 · 𝑢) ∈ ℂ → (exp‘-(𝐾 · 𝑢)) ≠ 0)
135 eldifsn 4712 . . . . . . . . . . . . . . 15 ((exp‘-(𝐾 · 𝑢)) ∈ (ℂ ∖ {0}) ↔ ((exp‘-(𝐾 · 𝑢)) ∈ ℂ ∧ (exp‘-(𝐾 · 𝑢)) ≠ 0))
13639, 134, 135sylanbrc 585 . . . . . . . . . . . . . 14 (-(𝐾 · 𝑢) ∈ ℂ → (exp‘-(𝐾 · 𝑢)) ∈ (ℂ ∖ {0}))
13711, 136syl 17 . . . . . . . . . . . . 13 ((𝜑𝑢𝑆) → (exp‘-(𝐾 · 𝑢)) ∈ (ℂ ∖ {0}))
138137fmpttd 6873 . . . . . . . . . . . 12 (𝜑 → (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))):𝑆⟶(ℂ ∖ {0}))
139 ofdivcan4 40652 . . . . . . . . . . . 12 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝑌:𝑆⟶ℂ ∧ (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))):𝑆⟶(ℂ ∖ {0})) → ((𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f / (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = 𝑌)
1401, 38, 138, 139syl3anc 1367 . . . . . . . . . . 11 (𝜑 → ((𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f / (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = 𝑌)
141140eqeq1d 2823 . . . . . . . . . 10 (𝜑 → (((𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f / (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = ((𝑆 × {𝑥}) ∘f / (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ↔ 𝑌 = ((𝑆 × {𝑥}) ∘f / (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))))
142133, 141syl5ib 246 . . . . . . . . 9 (𝜑 → ((𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = (𝑆 × {𝑥}) → 𝑌 = ((𝑆 × {𝑥}) ∘f / (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))))
143142adantr 483 . . . . . . . 8 ((𝜑𝑥 ∈ ℂ) → ((𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = (𝑆 × {𝑥}) → 𝑌 = ((𝑆 × {𝑥}) ∘f / (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))))
144 vex 3497 . . . . . . . . . . . . 13 𝑥 ∈ V
145144a1i 11 . . . . . . . . . . . 12 ((𝜑𝑢𝑆) → 𝑥 ∈ V)
146 ovexd 7185 . . . . . . . . . . . 12 ((𝜑𝑢𝑆) → (1 / (exp‘(𝐾 · 𝑢))) ∈ V)
147 fconstmpt 5608 . . . . . . . . . . . . 13 (𝑆 × {𝑥}) = (𝑢𝑆𝑥)
148147a1i 11 . . . . . . . . . . . 12 (𝜑 → (𝑆 × {𝑥}) = (𝑢𝑆𝑥))
149 efneg 15445 . . . . . . . . . . . . . 14 ((𝐾 · 𝑢) ∈ ℂ → (exp‘-(𝐾 · 𝑢)) = (1 / (exp‘(𝐾 · 𝑢))))
15010, 149syl 17 . . . . . . . . . . . . 13 ((𝜑𝑢𝑆) → (exp‘-(𝐾 · 𝑢)) = (1 / (exp‘(𝐾 · 𝑢))))
151150mpteq2dva 5153 . . . . . . . . . . . 12 (𝜑 → (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))) = (𝑢𝑆 ↦ (1 / (exp‘(𝐾 · 𝑢)))))
1521, 145, 146, 148, 151offval2 7420 . . . . . . . . . . 11 (𝜑 → ((𝑆 × {𝑥}) ∘f / (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = (𝑢𝑆 ↦ (𝑥 / (1 / (exp‘(𝐾 · 𝑢))))))
153152adantr 483 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℂ) → ((𝑆 × {𝑥}) ∘f / (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = (𝑢𝑆 ↦ (𝑥 / (1 / (exp‘(𝐾 · 𝑢))))))
154 efcl 15430 . . . . . . . . . . . . . . . . 17 ((𝐾 · 𝑢) ∈ ℂ → (exp‘(𝐾 · 𝑢)) ∈ ℂ)
155 efne0 15444 . . . . . . . . . . . . . . . . 17 ((𝐾 · 𝑢) ∈ ℂ → (exp‘(𝐾 · 𝑢)) ≠ 0)
156154, 155jca 514 . . . . . . . . . . . . . . . 16 ((𝐾 · 𝑢) ∈ ℂ → ((exp‘(𝐾 · 𝑢)) ∈ ℂ ∧ (exp‘(𝐾 · 𝑢)) ≠ 0))
15710, 156syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑢𝑆) → ((exp‘(𝐾 · 𝑢)) ∈ ℂ ∧ (exp‘(𝐾 · 𝑢)) ≠ 0))
158 ax-1ne0 10600 . . . . . . . . . . . . . . . . 17 1 ≠ 0
15918, 158pm3.2i 473 . . . . . . . . . . . . . . . 16 (1 ∈ ℂ ∧ 1 ≠ 0)
160 divdiv2 11346 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℂ ∧ (1 ∈ ℂ ∧ 1 ≠ 0) ∧ ((exp‘(𝐾 · 𝑢)) ∈ ℂ ∧ (exp‘(𝐾 · 𝑢)) ≠ 0)) → (𝑥 / (1 / (exp‘(𝐾 · 𝑢)))) = ((𝑥 · (exp‘(𝐾 · 𝑢))) / 1))
161159, 160mp3an2 1445 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℂ ∧ ((exp‘(𝐾 · 𝑢)) ∈ ℂ ∧ (exp‘(𝐾 · 𝑢)) ≠ 0)) → (𝑥 / (1 / (exp‘(𝐾 · 𝑢)))) = ((𝑥 · (exp‘(𝐾 · 𝑢))) / 1))
162157, 161sylan2 594 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℂ ∧ (𝜑𝑢𝑆)) → (𝑥 / (1 / (exp‘(𝐾 · 𝑢)))) = ((𝑥 · (exp‘(𝐾 · 𝑢))) / 1))
16310, 154syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑢𝑆) → (exp‘(𝐾 · 𝑢)) ∈ ℂ)
164 mulcl 10615 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℂ ∧ (exp‘(𝐾 · 𝑢)) ∈ ℂ) → (𝑥 · (exp‘(𝐾 · 𝑢))) ∈ ℂ)
165163, 164sylan2 594 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℂ ∧ (𝜑𝑢𝑆)) → (𝑥 · (exp‘(𝐾 · 𝑢))) ∈ ℂ)
166165div1d 11402 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℂ ∧ (𝜑𝑢𝑆)) → ((𝑥 · (exp‘(𝐾 · 𝑢))) / 1) = (𝑥 · (exp‘(𝐾 · 𝑢))))
167162, 166eqtrd 2856 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ (𝜑𝑢𝑆)) → (𝑥 / (1 / (exp‘(𝐾 · 𝑢)))) = (𝑥 · (exp‘(𝐾 · 𝑢))))
168167ancoms 461 . . . . . . . . . . . 12 (((𝜑𝑢𝑆) ∧ 𝑥 ∈ ℂ) → (𝑥 / (1 / (exp‘(𝐾 · 𝑢)))) = (𝑥 · (exp‘(𝐾 · 𝑢))))
169168an32s 650 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℂ) ∧ 𝑢𝑆) → (𝑥 / (1 / (exp‘(𝐾 · 𝑢)))) = (𝑥 · (exp‘(𝐾 · 𝑢))))
170169mpteq2dva 5153 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℂ) → (𝑢𝑆 ↦ (𝑥 / (1 / (exp‘(𝐾 · 𝑢))))) = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))))
171153, 170eqtrd 2856 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ) → ((𝑆 × {𝑥}) ∘f / (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))))
172171eqeq2d 2832 . . . . . . . 8 ((𝜑𝑥 ∈ ℂ) → (𝑌 = ((𝑆 × {𝑥}) ∘f / (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ↔ 𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))))
173143, 172sylibd 241 . . . . . . 7 ((𝜑𝑥 ∈ ℂ) → ((𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = (𝑆 × {𝑥}) → 𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))))
174173reximdva 3274 . . . . . 6 (𝜑 → (∃𝑥 ∈ ℂ (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = (𝑆 × {𝑥}) → ∃𝑥 ∈ ℂ 𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))))
175174adantr 483 . . . . 5 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌)) → (∃𝑥 ∈ ℂ (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = (𝑆 × {𝑥}) → ∃𝑥 ∈ ℂ 𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))))
176132, 175mpd 15 . . . 4 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌)) → ∃𝑥 ∈ ℂ 𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))))
177176ex 415 . . 3 (𝜑 → ((𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌) → ∃𝑥 ∈ ℂ 𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))))
1781adantr 483 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))))) → 𝑆 ∈ {ℝ, ℂ})
1794adantr 483 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))))) → 𝐾 ∈ ℂ)
180 simprl 769 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))))) → 𝑥 ∈ ℂ)
181 eqid 2821 . . . . . . 7 (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))) = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))
182178, 179, 180, 181expgrowthi 40658 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))))) → (𝑆 D (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))) = ((𝑆 × {𝐾}) ∘f · (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))))
1831823impb 1111 . . . . 5 ((𝜑𝑥 ∈ ℂ ∧ 𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))) → (𝑆 D (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))) = ((𝑆 × {𝐾}) ∘f · (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))))
184 oveq2 7158 . . . . . . 7 (𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))) → (𝑆 D 𝑌) = (𝑆 D (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))))
185 oveq2 7158 . . . . . . 7 (𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))) → ((𝑆 × {𝐾}) ∘f · 𝑌) = ((𝑆 × {𝐾}) ∘f · (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))))
186184, 185eqeq12d 2837 . . . . . 6 (𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))) → ((𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌) ↔ (𝑆 D (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))) = ((𝑆 × {𝐾}) ∘f · (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))))))
1871863ad2ant3 1131 . . . . 5 ((𝜑𝑥 ∈ ℂ ∧ 𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))) → ((𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌) ↔ (𝑆 D (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))) = ((𝑆 × {𝐾}) ∘f · (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))))))
188183, 187mpbird 259 . . . 4 ((𝜑𝑥 ∈ ℂ ∧ 𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))) → (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌))
189188rexlimdv3a 3286 . . 3 (𝜑 → (∃𝑥 ∈ ℂ 𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))) → (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌)))
190177, 189impbid 214 . 2 (𝜑 → ((𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌) ↔ ∃𝑥 ∈ ℂ 𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))))
191 oveq2 7158 . . . . . . . 8 (𝑢 = 𝑡 → (𝐾 · 𝑢) = (𝐾 · 𝑡))
192191fveq2d 6668 . . . . . . 7 (𝑢 = 𝑡 → (exp‘(𝐾 · 𝑢)) = (exp‘(𝐾 · 𝑡)))
193192oveq2d 7166 . . . . . 6 (𝑢 = 𝑡 → (𝑥 · (exp‘(𝐾 · 𝑢))) = (𝑥 · (exp‘(𝐾 · 𝑡))))
194193cbvmptv 5161 . . . . 5 (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))) = (𝑡𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑡))))
195 oveq1 7157 . . . . . 6 (𝑥 = 𝑐 → (𝑥 · (exp‘(𝐾 · 𝑡))) = (𝑐 · (exp‘(𝐾 · 𝑡))))
196195mpteq2dv 5154 . . . . 5 (𝑥 = 𝑐 → (𝑡𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑡)))) = (𝑡𝑆 ↦ (𝑐 · (exp‘(𝐾 · 𝑡)))))
197194, 196syl5eq 2868 . . . 4 (𝑥 = 𝑐 → (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))) = (𝑡𝑆 ↦ (𝑐 · (exp‘(𝐾 · 𝑡)))))
198197eqeq2d 2832 . . 3 (𝑥 = 𝑐 → (𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))) ↔ 𝑌 = (𝑡𝑆 ↦ (𝑐 · (exp‘(𝐾 · 𝑡))))))
199198cbvrexvw 3450 . 2 (∃𝑥 ∈ ℂ 𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))) ↔ ∃𝑐 ∈ ℂ 𝑌 = (𝑡𝑆 ↦ (𝑐 · (exp‘(𝐾 · 𝑡)))))
200190, 199syl6bb 289 1 (𝜑 → ((𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌) ↔ ∃𝑐 ∈ ℂ 𝑌 = (𝑡𝑆 ↦ (𝑐 · (exp‘(𝐾 · 𝑡))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wne 3016  wrex 3139  Vcvv 3494  cdif 3932  wss 3935  {csn 4560  {cpr 4562  cmpt 5138   × cxp 5547  dom cdm 5549   Fn wfn 6344  wf 6345  cfv 6349  (class class class)co 7150  f cof 7401  cc 10529  cr 10530  0cc0 10531  1c1 10532   + caddc 10534   · cmul 10536  cmin 10864  -cneg 10865   / cdiv 11291  expce 15409   D cdv 24455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-inf2 9098  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609  ax-addf 10610  ax-mulf 10611
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-iin 4914  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-om 7575  df-1st 7683  df-2nd 7684  df-supp 7825  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8283  df-map 8402  df-pm 8403  df-ixp 8456  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fsupp 8828  df-fi 8869  df-sup 8900  df-inf 8901  df-oi 8968  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-q 12343  df-rp 12384  df-xneg 12501  df-xadd 12502  df-xmul 12503  df-ioo 12736  df-ico 12738  df-icc 12739  df-fz 12887  df-fzo 13028  df-fl 13156  df-seq 13364  df-exp 13424  df-fac 13628  df-bc 13657  df-hash 13685  df-shft 14420  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-limsup 14822  df-clim 14839  df-rlim 14840  df-sum 15037  df-ef 15415  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-mulr 16573  df-starv 16574  df-sca 16575  df-vsca 16576  df-ip 16577  df-tset 16578  df-ple 16579  df-ds 16581  df-unif 16582  df-hom 16583  df-cco 16584  df-rest 16690  df-topn 16691  df-0g 16709  df-gsum 16710  df-topgen 16711  df-pt 16712  df-prds 16715  df-xrs 16769  df-qtop 16774  df-imas 16775  df-xps 16777  df-mre 16851  df-mrc 16852  df-acs 16854  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-submnd 17951  df-mulg 18219  df-cntz 18441  df-cmn 18902  df-psmet 20531  df-xmet 20532  df-met 20533  df-bl 20534  df-mopn 20535  df-fbas 20536  df-fg 20537  df-cnfld 20540  df-top 21496  df-topon 21513  df-topsp 21535  df-bases 21548  df-cld 21621  df-ntr 21622  df-cls 21623  df-nei 21700  df-lp 21738  df-perf 21739  df-cn 21829  df-cnp 21830  df-haus 21917  df-cmp 21989  df-tx 22164  df-hmeo 22357  df-fil 22448  df-fm 22540  df-flim 22541  df-flf 22542  df-xms 22924  df-ms 22925  df-tms 22926  df-cncf 23480  df-limc 24458  df-dv 24459
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator