![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > expgt1 | Structured version Visualization version GIF version |
Description: Positive integer exponentiation with a mantissa greater than 1 is greater than 1. (Contributed by NM, 13-Feb-2005.) (Revised by Mario Carneiro, 4-Jun-2014.) |
Ref | Expression |
---|---|
expgt1 | ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → 1 < (𝐴↑𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1re 10077 | . . 3 ⊢ 1 ∈ ℝ | |
2 | 1 | a1i 11 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → 1 ∈ ℝ) |
3 | simp1 1081 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → 𝐴 ∈ ℝ) | |
4 | simp2 1082 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → 𝑁 ∈ ℕ) | |
5 | 4 | nnnn0d 11389 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → 𝑁 ∈ ℕ0) |
6 | reexpcl 12917 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℝ) | |
7 | 3, 5, 6 | syl2anc 694 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → (𝐴↑𝑁) ∈ ℝ) |
8 | simp3 1083 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → 1 < 𝐴) | |
9 | nnm1nn0 11372 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0) | |
10 | 4, 9 | syl 17 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → (𝑁 − 1) ∈ ℕ0) |
11 | ltle 10164 | . . . . . . 7 ⊢ ((1 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (1 < 𝐴 → 1 ≤ 𝐴)) | |
12 | 1, 3, 11 | sylancr 696 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → (1 < 𝐴 → 1 ≤ 𝐴)) |
13 | 8, 12 | mpd 15 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → 1 ≤ 𝐴) |
14 | expge1 12937 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ (𝑁 − 1) ∈ ℕ0 ∧ 1 ≤ 𝐴) → 1 ≤ (𝐴↑(𝑁 − 1))) | |
15 | 3, 10, 13, 14 | syl3anc 1366 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → 1 ≤ (𝐴↑(𝑁 − 1))) |
16 | reexpcl 12917 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ (𝑁 − 1) ∈ ℕ0) → (𝐴↑(𝑁 − 1)) ∈ ℝ) | |
17 | 3, 10, 16 | syl2anc 694 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → (𝐴↑(𝑁 − 1)) ∈ ℝ) |
18 | 0red 10079 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → 0 ∈ ℝ) | |
19 | 0lt1 10588 | . . . . . . 7 ⊢ 0 < 1 | |
20 | 19 | a1i 11 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → 0 < 1) |
21 | 18, 2, 3, 20, 8 | lttrd 10236 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → 0 < 𝐴) |
22 | lemul1 10913 | . . . . 5 ⊢ ((1 ∈ ℝ ∧ (𝐴↑(𝑁 − 1)) ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (1 ≤ (𝐴↑(𝑁 − 1)) ↔ (1 · 𝐴) ≤ ((𝐴↑(𝑁 − 1)) · 𝐴))) | |
23 | 2, 17, 3, 21, 22 | syl112anc 1370 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → (1 ≤ (𝐴↑(𝑁 − 1)) ↔ (1 · 𝐴) ≤ ((𝐴↑(𝑁 − 1)) · 𝐴))) |
24 | 15, 23 | mpbid 222 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → (1 · 𝐴) ≤ ((𝐴↑(𝑁 − 1)) · 𝐴)) |
25 | recn 10064 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
26 | 25 | 3ad2ant1 1102 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → 𝐴 ∈ ℂ) |
27 | 26 | mulid2d 10096 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → (1 · 𝐴) = 𝐴) |
28 | 27 | eqcomd 2657 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → 𝐴 = (1 · 𝐴)) |
29 | expm1t 12928 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝐴↑𝑁) = ((𝐴↑(𝑁 − 1)) · 𝐴)) | |
30 | 26, 4, 29 | syl2anc 694 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → (𝐴↑𝑁) = ((𝐴↑(𝑁 − 1)) · 𝐴)) |
31 | 24, 28, 30 | 3brtr4d 4717 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → 𝐴 ≤ (𝐴↑𝑁)) |
32 | 2, 3, 7, 8, 31 | ltletrd 10235 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → 1 < (𝐴↑𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ w3a 1054 = wceq 1523 ∈ wcel 2030 class class class wbr 4685 (class class class)co 6690 ℂcc 9972 ℝcr 9973 0cc0 9974 1c1 9975 · cmul 9979 < clt 10112 ≤ cle 10113 − cmin 10304 ℕcn 11058 ℕ0cn0 11330 ↑cexp 12900 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-n0 11331 df-z 11416 df-uz 11726 df-seq 12842 df-exp 12901 |
This theorem is referenced by: ltexp2a 12952 dvdsprmpweqle 15637 perfectlem1 24999 perfectlem2 25000 dchrisum0flblem2 25243 stirlinglem10 40618 fmtno4prm 41812 perfectALTVlem1 41955 perfectALTVlem2 41956 fllog2 42687 dignn0flhalflem1 42734 |
Copyright terms: Public domain | W3C validator |