MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expgt1 Structured version   Visualization version   GIF version

Theorem expgt1 12938
Description: Positive integer exponentiation with a mantissa greater than 1 is greater than 1. (Contributed by NM, 13-Feb-2005.) (Revised by Mario Carneiro, 4-Jun-2014.)
Assertion
Ref Expression
expgt1 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → 1 < (𝐴𝑁))

Proof of Theorem expgt1
StepHypRef Expression
1 1re 10077 . . 3 1 ∈ ℝ
21a1i 11 . 2 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → 1 ∈ ℝ)
3 simp1 1081 . 2 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → 𝐴 ∈ ℝ)
4 simp2 1082 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → 𝑁 ∈ ℕ)
54nnnn0d 11389 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → 𝑁 ∈ ℕ0)
6 reexpcl 12917 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → (𝐴𝑁) ∈ ℝ)
73, 5, 6syl2anc 694 . 2 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → (𝐴𝑁) ∈ ℝ)
8 simp3 1083 . 2 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → 1 < 𝐴)
9 nnm1nn0 11372 . . . . . 6 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
104, 9syl 17 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → (𝑁 − 1) ∈ ℕ0)
11 ltle 10164 . . . . . . 7 ((1 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (1 < 𝐴 → 1 ≤ 𝐴))
121, 3, 11sylancr 696 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → (1 < 𝐴 → 1 ≤ 𝐴))
138, 12mpd 15 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → 1 ≤ 𝐴)
14 expge1 12937 . . . . 5 ((𝐴 ∈ ℝ ∧ (𝑁 − 1) ∈ ℕ0 ∧ 1 ≤ 𝐴) → 1 ≤ (𝐴↑(𝑁 − 1)))
153, 10, 13, 14syl3anc 1366 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → 1 ≤ (𝐴↑(𝑁 − 1)))
16 reexpcl 12917 . . . . . 6 ((𝐴 ∈ ℝ ∧ (𝑁 − 1) ∈ ℕ0) → (𝐴↑(𝑁 − 1)) ∈ ℝ)
173, 10, 16syl2anc 694 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → (𝐴↑(𝑁 − 1)) ∈ ℝ)
18 0red 10079 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → 0 ∈ ℝ)
19 0lt1 10588 . . . . . . 7 0 < 1
2019a1i 11 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → 0 < 1)
2118, 2, 3, 20, 8lttrd 10236 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → 0 < 𝐴)
22 lemul1 10913 . . . . 5 ((1 ∈ ℝ ∧ (𝐴↑(𝑁 − 1)) ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (1 ≤ (𝐴↑(𝑁 − 1)) ↔ (1 · 𝐴) ≤ ((𝐴↑(𝑁 − 1)) · 𝐴)))
232, 17, 3, 21, 22syl112anc 1370 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → (1 ≤ (𝐴↑(𝑁 − 1)) ↔ (1 · 𝐴) ≤ ((𝐴↑(𝑁 − 1)) · 𝐴)))
2415, 23mpbid 222 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → (1 · 𝐴) ≤ ((𝐴↑(𝑁 − 1)) · 𝐴))
25 recn 10064 . . . . . 6 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
26253ad2ant1 1102 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → 𝐴 ∈ ℂ)
2726mulid2d 10096 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → (1 · 𝐴) = 𝐴)
2827eqcomd 2657 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → 𝐴 = (1 · 𝐴))
29 expm1t 12928 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝐴𝑁) = ((𝐴↑(𝑁 − 1)) · 𝐴))
3026, 4, 29syl2anc 694 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → (𝐴𝑁) = ((𝐴↑(𝑁 − 1)) · 𝐴))
3124, 28, 303brtr4d 4717 . 2 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → 𝐴 ≤ (𝐴𝑁))
322, 3, 7, 8, 31ltletrd 10235 1 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → 1 < (𝐴𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  w3a 1054   = wceq 1523  wcel 2030   class class class wbr 4685  (class class class)co 6690  cc 9972  cr 9973  0cc0 9974  1c1 9975   · cmul 9979   < clt 10112  cle 10113  cmin 10304  cn 11058  0cn0 11330  cexp 12900
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-n0 11331  df-z 11416  df-uz 11726  df-seq 12842  df-exp 12901
This theorem is referenced by:  ltexp2a  12952  dvdsprmpweqle  15637  perfectlem1  24999  perfectlem2  25000  dchrisum0flblem2  25243  stirlinglem10  40618  fmtno4prm  41812  perfectALTVlem1  41955  perfectALTVlem2  41956  fllog2  42687  dignn0flhalflem1  42734
  Copyright terms: Public domain W3C validator