MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  explecnv Structured version   Visualization version   GIF version

Theorem explecnv 14522
Description: A sequence of terms converges to zero when it is less than powers of a number 𝐴 whose absolute value is smaller than 1. (Contributed by NM, 19-Jul-2008.) (Revised by Mario Carneiro, 26-Apr-2014.)
Hypotheses
Ref Expression
explecnv.1 𝑍 = (ℤ𝑀)
explecnv.2 (𝜑𝐹𝑉)
explecnv.3 (𝜑𝑀 ∈ ℤ)
explecnv.5 (𝜑𝐴 ∈ ℝ)
explecnv.4 (𝜑 → (abs‘𝐴) < 1)
explecnv.6 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
explecnv.7 ((𝜑𝑘𝑍) → (abs‘(𝐹𝑘)) ≤ (𝐴𝑘))
Assertion
Ref Expression
explecnv (𝜑𝐹 ⇝ 0)
Distinct variable groups:   𝐴,𝑘   𝜑,𝑘   𝑘,𝐹   𝑘,𝑍   𝑘,𝑀
Allowed substitution hint:   𝑉(𝑘)

Proof of Theorem explecnv
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 eqid 2621 . . 3 (ℤ‘if(𝑀 ≤ 0, 0, 𝑀)) = (ℤ‘if(𝑀 ≤ 0, 0, 𝑀))
2 0z 11332 . . . 4 0 ∈ ℤ
3 explecnv.3 . . . 4 (𝜑𝑀 ∈ ℤ)
4 ifcl 4102 . . . 4 ((0 ∈ ℤ ∧ 𝑀 ∈ ℤ) → if(𝑀 ≤ 0, 0, 𝑀) ∈ ℤ)
52, 3, 4sylancr 694 . . 3 (𝜑 → if(𝑀 ≤ 0, 0, 𝑀) ∈ ℤ)
6 explecnv.5 . . . . 5 (𝜑𝐴 ∈ ℝ)
76recnd 10012 . . . 4 (𝜑𝐴 ∈ ℂ)
8 explecnv.4 . . . 4 (𝜑 → (abs‘𝐴) < 1)
97, 8expcnv 14521 . . 3 (𝜑 → (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) ⇝ 0)
10 explecnv.1 . . . . . 6 𝑍 = (ℤ𝑀)
11 fvex 6158 . . . . . 6 (ℤ𝑀) ∈ V
1210, 11eqeltri 2694 . . . . 5 𝑍 ∈ V
1312mptex 6440 . . . 4 (𝑛𝑍 ↦ (abs‘(𝐹𝑛))) ∈ V
1413a1i 11 . . 3 (𝜑 → (𝑛𝑍 ↦ (abs‘(𝐹𝑛))) ∈ V)
15 nn0uz 11666 . . . . . . . . . . 11 0 = (ℤ‘0)
1610, 15ineq12i 3790 . . . . . . . . . 10 (𝑍 ∩ ℕ0) = ((ℤ𝑀) ∩ (ℤ‘0))
17 uzin 11664 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 0 ∈ ℤ) → ((ℤ𝑀) ∩ (ℤ‘0)) = (ℤ‘if(𝑀 ≤ 0, 0, 𝑀)))
183, 2, 17sylancl 693 . . . . . . . . . 10 (𝜑 → ((ℤ𝑀) ∩ (ℤ‘0)) = (ℤ‘if(𝑀 ≤ 0, 0, 𝑀)))
1916, 18syl5req 2668 . . . . . . . . 9 (𝜑 → (ℤ‘if(𝑀 ≤ 0, 0, 𝑀)) = (𝑍 ∩ ℕ0))
2019eleq2d 2684 . . . . . . . 8 (𝜑 → (𝑘 ∈ (ℤ‘if(𝑀 ≤ 0, 0, 𝑀)) ↔ 𝑘 ∈ (𝑍 ∩ ℕ0)))
2120biimpa 501 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ‘if(𝑀 ≤ 0, 0, 𝑀))) → 𝑘 ∈ (𝑍 ∩ ℕ0))
22 elin 3774 . . . . . . 7 (𝑘 ∈ (𝑍 ∩ ℕ0) ↔ (𝑘𝑍𝑘 ∈ ℕ0))
2321, 22sylib 208 . . . . . 6 ((𝜑𝑘 ∈ (ℤ‘if(𝑀 ≤ 0, 0, 𝑀))) → (𝑘𝑍𝑘 ∈ ℕ0))
2423simprd 479 . . . . 5 ((𝜑𝑘 ∈ (ℤ‘if(𝑀 ≤ 0, 0, 𝑀))) → 𝑘 ∈ ℕ0)
25 oveq2 6612 . . . . . 6 (𝑛 = 𝑘 → (𝐴𝑛) = (𝐴𝑘))
26 eqid 2621 . . . . . 6 (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) = (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))
27 ovex 6632 . . . . . 6 (𝐴𝑘) ∈ V
2825, 26, 27fvmpt 6239 . . . . 5 (𝑘 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) = (𝐴𝑘))
2924, 28syl 17 . . . 4 ((𝜑𝑘 ∈ (ℤ‘if(𝑀 ≤ 0, 0, 𝑀))) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) = (𝐴𝑘))
306adantr 481 . . . . 5 ((𝜑𝑘 ∈ (ℤ‘if(𝑀 ≤ 0, 0, 𝑀))) → 𝐴 ∈ ℝ)
3130, 24reexpcld 12965 . . . 4 ((𝜑𝑘 ∈ (ℤ‘if(𝑀 ≤ 0, 0, 𝑀))) → (𝐴𝑘) ∈ ℝ)
3229, 31eqeltrd 2698 . . 3 ((𝜑𝑘 ∈ (ℤ‘if(𝑀 ≤ 0, 0, 𝑀))) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) ∈ ℝ)
3323simpld 475 . . . . 5 ((𝜑𝑘 ∈ (ℤ‘if(𝑀 ≤ 0, 0, 𝑀))) → 𝑘𝑍)
34 fveq2 6148 . . . . . . 7 (𝑛 = 𝑘 → (𝐹𝑛) = (𝐹𝑘))
3534fveq2d 6152 . . . . . 6 (𝑛 = 𝑘 → (abs‘(𝐹𝑛)) = (abs‘(𝐹𝑘)))
36 eqid 2621 . . . . . 6 (𝑛𝑍 ↦ (abs‘(𝐹𝑛))) = (𝑛𝑍 ↦ (abs‘(𝐹𝑛)))
37 fvex 6158 . . . . . 6 (abs‘(𝐹𝑘)) ∈ V
3835, 36, 37fvmpt 6239 . . . . 5 (𝑘𝑍 → ((𝑛𝑍 ↦ (abs‘(𝐹𝑛)))‘𝑘) = (abs‘(𝐹𝑘)))
3933, 38syl 17 . . . 4 ((𝜑𝑘 ∈ (ℤ‘if(𝑀 ≤ 0, 0, 𝑀))) → ((𝑛𝑍 ↦ (abs‘(𝐹𝑛)))‘𝑘) = (abs‘(𝐹𝑘)))
40 explecnv.6 . . . . . 6 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
4133, 40syldan 487 . . . . 5 ((𝜑𝑘 ∈ (ℤ‘if(𝑀 ≤ 0, 0, 𝑀))) → (𝐹𝑘) ∈ ℂ)
4241abscld 14109 . . . 4 ((𝜑𝑘 ∈ (ℤ‘if(𝑀 ≤ 0, 0, 𝑀))) → (abs‘(𝐹𝑘)) ∈ ℝ)
4339, 42eqeltrd 2698 . . 3 ((𝜑𝑘 ∈ (ℤ‘if(𝑀 ≤ 0, 0, 𝑀))) → ((𝑛𝑍 ↦ (abs‘(𝐹𝑛)))‘𝑘) ∈ ℝ)
44 explecnv.7 . . . . 5 ((𝜑𝑘𝑍) → (abs‘(𝐹𝑘)) ≤ (𝐴𝑘))
4533, 44syldan 487 . . . 4 ((𝜑𝑘 ∈ (ℤ‘if(𝑀 ≤ 0, 0, 𝑀))) → (abs‘(𝐹𝑘)) ≤ (𝐴𝑘))
4645, 39, 293brtr4d 4645 . . 3 ((𝜑𝑘 ∈ (ℤ‘if(𝑀 ≤ 0, 0, 𝑀))) → ((𝑛𝑍 ↦ (abs‘(𝐹𝑛)))‘𝑘) ≤ ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘))
4741absge0d 14117 . . . 4 ((𝜑𝑘 ∈ (ℤ‘if(𝑀 ≤ 0, 0, 𝑀))) → 0 ≤ (abs‘(𝐹𝑘)))
4847, 39breqtrrd 4641 . . 3 ((𝜑𝑘 ∈ (ℤ‘if(𝑀 ≤ 0, 0, 𝑀))) → 0 ≤ ((𝑛𝑍 ↦ (abs‘(𝐹𝑛)))‘𝑘))
491, 5, 9, 14, 32, 43, 46, 48climsqz2 14306 . 2 (𝜑 → (𝑛𝑍 ↦ (abs‘(𝐹𝑛))) ⇝ 0)
50 explecnv.2 . . 3 (𝜑𝐹𝑉)
5138adantl 482 . . 3 ((𝜑𝑘𝑍) → ((𝑛𝑍 ↦ (abs‘(𝐹𝑛)))‘𝑘) = (abs‘(𝐹𝑘)))
5210, 3, 50, 14, 40, 51climabs0 14250 . 2 (𝜑 → (𝐹 ⇝ 0 ↔ (𝑛𝑍 ↦ (abs‘(𝐹𝑛))) ⇝ 0))
5349, 52mpbird 247 1 (𝜑𝐹 ⇝ 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987  Vcvv 3186  cin 3554  ifcif 4058   class class class wbr 4613  cmpt 4673  cfv 5847  (class class class)co 6604  cc 9878  cr 9879  0cc0 9880  1c1 9881   < clt 10018  cle 10019  0cn0 11236  cz 11321  cuz 11631  cexp 12800  abscabs 13908  cli 14149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-pm 7805  df-en 7900  df-dom 7901  df-sdom 7902  df-sup 8292  df-inf 8293  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-n0 11237  df-z 11322  df-uz 11632  df-rp 11777  df-fl 12533  df-seq 12742  df-exp 12801  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-clim 14153  df-rlim 14154
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator