MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expmhm Structured version   Visualization version   GIF version

Theorem expmhm 20617
Description: Exponentiation is a monoid homomorphism from addition to multiplication. (Contributed by Mario Carneiro, 18-Jun-2015.)
Hypotheses
Ref Expression
expmhm.1 𝑁 = (ℂflds0)
expmhm.2 𝑀 = (mulGrp‘ℂfld)
Assertion
Ref Expression
expmhm (𝐴 ∈ ℂ → (𝑥 ∈ ℕ0 ↦ (𝐴𝑥)) ∈ (𝑁 MndHom 𝑀))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝑀(𝑥)   𝑁(𝑥)

Proof of Theorem expmhm
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 expcl 13450 . . 3 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℕ0) → (𝐴𝑥) ∈ ℂ)
21fmpttd 6882 . 2 (𝐴 ∈ ℂ → (𝑥 ∈ ℕ0 ↦ (𝐴𝑥)):ℕ0⟶ℂ)
3 expadd 13474 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℕ0𝑧 ∈ ℕ0) → (𝐴↑(𝑦 + 𝑧)) = ((𝐴𝑦) · (𝐴𝑧)))
433expb 1116 . . . 4 ((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℕ0𝑧 ∈ ℕ0)) → (𝐴↑(𝑦 + 𝑧)) = ((𝐴𝑦) · (𝐴𝑧)))
5 nn0addcl 11935 . . . . . 6 ((𝑦 ∈ ℕ0𝑧 ∈ ℕ0) → (𝑦 + 𝑧) ∈ ℕ0)
65adantl 484 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℕ0𝑧 ∈ ℕ0)) → (𝑦 + 𝑧) ∈ ℕ0)
7 oveq2 7167 . . . . . 6 (𝑥 = (𝑦 + 𝑧) → (𝐴𝑥) = (𝐴↑(𝑦 + 𝑧)))
8 eqid 2824 . . . . . 6 (𝑥 ∈ ℕ0 ↦ (𝐴𝑥)) = (𝑥 ∈ ℕ0 ↦ (𝐴𝑥))
9 ovex 7192 . . . . . 6 (𝐴↑(𝑦 + 𝑧)) ∈ V
107, 8, 9fvmpt 6771 . . . . 5 ((𝑦 + 𝑧) ∈ ℕ0 → ((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘(𝑦 + 𝑧)) = (𝐴↑(𝑦 + 𝑧)))
116, 10syl 17 . . . 4 ((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℕ0𝑧 ∈ ℕ0)) → ((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘(𝑦 + 𝑧)) = (𝐴↑(𝑦 + 𝑧)))
12 oveq2 7167 . . . . . . 7 (𝑥 = 𝑦 → (𝐴𝑥) = (𝐴𝑦))
13 ovex 7192 . . . . . . 7 (𝐴𝑦) ∈ V
1412, 8, 13fvmpt 6771 . . . . . 6 (𝑦 ∈ ℕ0 → ((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘𝑦) = (𝐴𝑦))
15 oveq2 7167 . . . . . . 7 (𝑥 = 𝑧 → (𝐴𝑥) = (𝐴𝑧))
16 ovex 7192 . . . . . . 7 (𝐴𝑧) ∈ V
1715, 8, 16fvmpt 6771 . . . . . 6 (𝑧 ∈ ℕ0 → ((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘𝑧) = (𝐴𝑧))
1814, 17oveqan12d 7178 . . . . 5 ((𝑦 ∈ ℕ0𝑧 ∈ ℕ0) → (((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘𝑦) · ((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘𝑧)) = ((𝐴𝑦) · (𝐴𝑧)))
1918adantl 484 . . . 4 ((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℕ0𝑧 ∈ ℕ0)) → (((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘𝑦) · ((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘𝑧)) = ((𝐴𝑦) · (𝐴𝑧)))
204, 11, 193eqtr4d 2869 . . 3 ((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℕ0𝑧 ∈ ℕ0)) → ((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘(𝑦 + 𝑧)) = (((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘𝑦) · ((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘𝑧)))
2120ralrimivva 3194 . 2 (𝐴 ∈ ℂ → ∀𝑦 ∈ ℕ0𝑧 ∈ ℕ0 ((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘(𝑦 + 𝑧)) = (((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘𝑦) · ((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘𝑧)))
22 0nn0 11915 . . . 4 0 ∈ ℕ0
23 oveq2 7167 . . . . 5 (𝑥 = 0 → (𝐴𝑥) = (𝐴↑0))
24 ovex 7192 . . . . 5 (𝐴↑0) ∈ V
2523, 8, 24fvmpt 6771 . . . 4 (0 ∈ ℕ0 → ((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘0) = (𝐴↑0))
2622, 25ax-mp 5 . . 3 ((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘0) = (𝐴↑0)
27 exp0 13436 . . 3 (𝐴 ∈ ℂ → (𝐴↑0) = 1)
2826, 27syl5eq 2871 . 2 (𝐴 ∈ ℂ → ((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘0) = 1)
29 nn0subm 20603 . . . . 5 0 ∈ (SubMnd‘ℂfld)
30 expmhm.1 . . . . . 6 𝑁 = (ℂflds0)
3130submmnd 17981 . . . . 5 (ℕ0 ∈ (SubMnd‘ℂfld) → 𝑁 ∈ Mnd)
3229, 31ax-mp 5 . . . 4 𝑁 ∈ Mnd
33 cnring 20570 . . . . 5 fld ∈ Ring
34 expmhm.2 . . . . . 6 𝑀 = (mulGrp‘ℂfld)
3534ringmgp 19306 . . . . 5 (ℂfld ∈ Ring → 𝑀 ∈ Mnd)
3633, 35ax-mp 5 . . . 4 𝑀 ∈ Mnd
3732, 36pm3.2i 473 . . 3 (𝑁 ∈ Mnd ∧ 𝑀 ∈ Mnd)
3830submbas 17982 . . . . 5 (ℕ0 ∈ (SubMnd‘ℂfld) → ℕ0 = (Base‘𝑁))
3929, 38ax-mp 5 . . . 4 0 = (Base‘𝑁)
40 cnfldbas 20552 . . . . 5 ℂ = (Base‘ℂfld)
4134, 40mgpbas 19248 . . . 4 ℂ = (Base‘𝑀)
42 cnfldadd 20553 . . . . . 6 + = (+g‘ℂfld)
4330, 42ressplusg 16615 . . . . 5 (ℕ0 ∈ (SubMnd‘ℂfld) → + = (+g𝑁))
4429, 43ax-mp 5 . . . 4 + = (+g𝑁)
45 cnfldmul 20554 . . . . 5 · = (.r‘ℂfld)
4634, 45mgpplusg 19246 . . . 4 · = (+g𝑀)
47 cnfld0 20572 . . . . . 6 0 = (0g‘ℂfld)
4830, 47subm0 17983 . . . . 5 (ℕ0 ∈ (SubMnd‘ℂfld) → 0 = (0g𝑁))
4929, 48ax-mp 5 . . . 4 0 = (0g𝑁)
50 cnfld1 20573 . . . . 5 1 = (1r‘ℂfld)
5134, 50ringidval 19256 . . . 4 1 = (0g𝑀)
5239, 41, 44, 46, 49, 51ismhm 17961 . . 3 ((𝑥 ∈ ℕ0 ↦ (𝐴𝑥)) ∈ (𝑁 MndHom 𝑀) ↔ ((𝑁 ∈ Mnd ∧ 𝑀 ∈ Mnd) ∧ ((𝑥 ∈ ℕ0 ↦ (𝐴𝑥)):ℕ0⟶ℂ ∧ ∀𝑦 ∈ ℕ0𝑧 ∈ ℕ0 ((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘(𝑦 + 𝑧)) = (((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘𝑦) · ((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘𝑧)) ∧ ((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘0) = 1)))
5337, 52mpbiran 707 . 2 ((𝑥 ∈ ℕ0 ↦ (𝐴𝑥)) ∈ (𝑁 MndHom 𝑀) ↔ ((𝑥 ∈ ℕ0 ↦ (𝐴𝑥)):ℕ0⟶ℂ ∧ ∀𝑦 ∈ ℕ0𝑧 ∈ ℕ0 ((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘(𝑦 + 𝑧)) = (((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘𝑦) · ((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘𝑧)) ∧ ((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘0) = 1))
542, 21, 28, 53syl3anbrc 1339 1 (𝐴 ∈ ℂ → (𝑥 ∈ ℕ0 ↦ (𝐴𝑥)) ∈ (𝑁 MndHom 𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1536  wcel 2113  wral 3141  cmpt 5149  wf 6354  cfv 6358  (class class class)co 7159  cc 10538  0cc0 10540  1c1 10541   + caddc 10543   · cmul 10545  0cn0 11900  cexp 13432  Basecbs 16486  s cress 16487  +gcplusg 16568  0gc0g 16716  Mndcmnd 17914   MndHom cmhm 17957  SubMndcsubmnd 17958  mulGrpcmgp 19242  Ringcrg 19300  fldccnfld 20548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-addf 10619  ax-mulf 10620
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-oadd 8109  df-er 8292  df-map 8411  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-nn 11642  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-fz 12896  df-seq 13373  df-exp 13433  df-struct 16488  df-ndx 16489  df-slot 16490  df-base 16492  df-sets 16493  df-ress 16494  df-plusg 16581  df-mulr 16582  df-starv 16583  df-tset 16587  df-ple 16588  df-ds 16590  df-unif 16591  df-0g 16718  df-mgm 17855  df-sgrp 17904  df-mnd 17915  df-mhm 17959  df-submnd 17960  df-grp 18109  df-cmn 18911  df-mgp 19243  df-ur 19255  df-ring 19302  df-cring 19303  df-cnfld 20549
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator