Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  expmordi Structured version   Visualization version   GIF version

Theorem expmordi 37829
Description: Mantissa ordering relationship for exponentiation. (Contributed by Stefan O'Rear, 16-Oct-2014.)
Assertion
Ref Expression
expmordi (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵) ∧ 𝑁 ∈ ℕ) → (𝐴𝑁) < (𝐵𝑁))

Proof of Theorem expmordi
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6698 . . . . . 6 (𝑎 = 1 → (𝐴𝑎) = (𝐴↑1))
2 oveq2 6698 . . . . . 6 (𝑎 = 1 → (𝐵𝑎) = (𝐵↑1))
31, 2breq12d 4698 . . . . 5 (𝑎 = 1 → ((𝐴𝑎) < (𝐵𝑎) ↔ (𝐴↑1) < (𝐵↑1)))
43imbi2d 329 . . . 4 (𝑎 = 1 → ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) → (𝐴𝑎) < (𝐵𝑎)) ↔ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) → (𝐴↑1) < (𝐵↑1))))
5 oveq2 6698 . . . . . 6 (𝑎 = 𝑏 → (𝐴𝑎) = (𝐴𝑏))
6 oveq2 6698 . . . . . 6 (𝑎 = 𝑏 → (𝐵𝑎) = (𝐵𝑏))
75, 6breq12d 4698 . . . . 5 (𝑎 = 𝑏 → ((𝐴𝑎) < (𝐵𝑎) ↔ (𝐴𝑏) < (𝐵𝑏)))
87imbi2d 329 . . . 4 (𝑎 = 𝑏 → ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) → (𝐴𝑎) < (𝐵𝑎)) ↔ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) → (𝐴𝑏) < (𝐵𝑏))))
9 oveq2 6698 . . . . . 6 (𝑎 = (𝑏 + 1) → (𝐴𝑎) = (𝐴↑(𝑏 + 1)))
10 oveq2 6698 . . . . . 6 (𝑎 = (𝑏 + 1) → (𝐵𝑎) = (𝐵↑(𝑏 + 1)))
119, 10breq12d 4698 . . . . 5 (𝑎 = (𝑏 + 1) → ((𝐴𝑎) < (𝐵𝑎) ↔ (𝐴↑(𝑏 + 1)) < (𝐵↑(𝑏 + 1))))
1211imbi2d 329 . . . 4 (𝑎 = (𝑏 + 1) → ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) → (𝐴𝑎) < (𝐵𝑎)) ↔ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) → (𝐴↑(𝑏 + 1)) < (𝐵↑(𝑏 + 1)))))
13 oveq2 6698 . . . . . 6 (𝑎 = 𝑁 → (𝐴𝑎) = (𝐴𝑁))
14 oveq2 6698 . . . . . 6 (𝑎 = 𝑁 → (𝐵𝑎) = (𝐵𝑁))
1513, 14breq12d 4698 . . . . 5 (𝑎 = 𝑁 → ((𝐴𝑎) < (𝐵𝑎) ↔ (𝐴𝑁) < (𝐵𝑁)))
1615imbi2d 329 . . . 4 (𝑎 = 𝑁 → ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) → (𝐴𝑎) < (𝐵𝑎)) ↔ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) → (𝐴𝑁) < (𝐵𝑁))))
17 recn 10064 . . . . . . 7 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
18 recn 10064 . . . . . . 7 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
19 exp1 12906 . . . . . . . 8 (𝐴 ∈ ℂ → (𝐴↑1) = 𝐴)
20 exp1 12906 . . . . . . . 8 (𝐵 ∈ ℂ → (𝐵↑1) = 𝐵)
2119, 20breqan12d 4701 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑1) < (𝐵↑1) ↔ 𝐴 < 𝐵))
2217, 18, 21syl2an 493 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴↑1) < (𝐵↑1) ↔ 𝐴 < 𝐵))
2322biimpar 501 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < 𝐵) → (𝐴↑1) < (𝐵↑1))
2423adantrl 752 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) → (𝐴↑1) < (𝐵↑1))
25 simp2ll 1148 . . . . . . . . . 10 ((𝑏 ∈ ℕ ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) ∧ (𝐴𝑏) < (𝐵𝑏)) → 𝐴 ∈ ℝ)
26 nnnn0 11337 . . . . . . . . . . 11 (𝑏 ∈ ℕ → 𝑏 ∈ ℕ0)
27263ad2ant1 1102 . . . . . . . . . 10 ((𝑏 ∈ ℕ ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) ∧ (𝐴𝑏) < (𝐵𝑏)) → 𝑏 ∈ ℕ0)
2825, 27reexpcld 13065 . . . . . . . . 9 ((𝑏 ∈ ℕ ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) ∧ (𝐴𝑏) < (𝐵𝑏)) → (𝐴𝑏) ∈ ℝ)
29 simp2lr 1149 . . . . . . . . . 10 ((𝑏 ∈ ℕ ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) ∧ (𝐴𝑏) < (𝐵𝑏)) → 𝐵 ∈ ℝ)
3029, 27reexpcld 13065 . . . . . . . . 9 ((𝑏 ∈ ℕ ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) ∧ (𝐴𝑏) < (𝐵𝑏)) → (𝐵𝑏) ∈ ℝ)
3128, 30jca 553 . . . . . . . 8 ((𝑏 ∈ ℕ ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) ∧ (𝐴𝑏) < (𝐵𝑏)) → ((𝐴𝑏) ∈ ℝ ∧ (𝐵𝑏) ∈ ℝ))
32 simp2rl 1150 . . . . . . . . . 10 ((𝑏 ∈ ℕ ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) ∧ (𝐴𝑏) < (𝐵𝑏)) → 0 ≤ 𝐴)
3325, 27, 32expge0d 13066 . . . . . . . . 9 ((𝑏 ∈ ℕ ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) ∧ (𝐴𝑏) < (𝐵𝑏)) → 0 ≤ (𝐴𝑏))
34 simp3 1083 . . . . . . . . 9 ((𝑏 ∈ ℕ ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) ∧ (𝐴𝑏) < (𝐵𝑏)) → (𝐴𝑏) < (𝐵𝑏))
3533, 34jca 553 . . . . . . . 8 ((𝑏 ∈ ℕ ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) ∧ (𝐴𝑏) < (𝐵𝑏)) → (0 ≤ (𝐴𝑏) ∧ (𝐴𝑏) < (𝐵𝑏)))
36 simp2l 1107 . . . . . . . 8 ((𝑏 ∈ ℕ ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) ∧ (𝐴𝑏) < (𝐵𝑏)) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
37 simp2r 1108 . . . . . . . 8 ((𝑏 ∈ ℕ ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) ∧ (𝐴𝑏) < (𝐵𝑏)) → (0 ≤ 𝐴𝐴 < 𝐵))
38 ltmul12a 10917 . . . . . . . 8 (((((𝐴𝑏) ∈ ℝ ∧ (𝐵𝑏) ∈ ℝ) ∧ (0 ≤ (𝐴𝑏) ∧ (𝐴𝑏) < (𝐵𝑏))) ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵))) → ((𝐴𝑏) · 𝐴) < ((𝐵𝑏) · 𝐵))
3931, 35, 36, 37, 38syl22anc 1367 . . . . . . 7 ((𝑏 ∈ ℕ ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) ∧ (𝐴𝑏) < (𝐵𝑏)) → ((𝐴𝑏) · 𝐴) < ((𝐵𝑏) · 𝐵))
4025recnd 10106 . . . . . . . 8 ((𝑏 ∈ ℕ ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) ∧ (𝐴𝑏) < (𝐵𝑏)) → 𝐴 ∈ ℂ)
4140, 27expp1d 13049 . . . . . . 7 ((𝑏 ∈ ℕ ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) ∧ (𝐴𝑏) < (𝐵𝑏)) → (𝐴↑(𝑏 + 1)) = ((𝐴𝑏) · 𝐴))
4229recnd 10106 . . . . . . . 8 ((𝑏 ∈ ℕ ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) ∧ (𝐴𝑏) < (𝐵𝑏)) → 𝐵 ∈ ℂ)
4342, 27expp1d 13049 . . . . . . 7 ((𝑏 ∈ ℕ ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) ∧ (𝐴𝑏) < (𝐵𝑏)) → (𝐵↑(𝑏 + 1)) = ((𝐵𝑏) · 𝐵))
4439, 41, 433brtr4d 4717 . . . . . 6 ((𝑏 ∈ ℕ ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) ∧ (𝐴𝑏) < (𝐵𝑏)) → (𝐴↑(𝑏 + 1)) < (𝐵↑(𝑏 + 1)))
45443exp 1283 . . . . 5 (𝑏 ∈ ℕ → (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) → ((𝐴𝑏) < (𝐵𝑏) → (𝐴↑(𝑏 + 1)) < (𝐵↑(𝑏 + 1)))))
4645a2d 29 . . . 4 (𝑏 ∈ ℕ → ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) → (𝐴𝑏) < (𝐵𝑏)) → (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) → (𝐴↑(𝑏 + 1)) < (𝐵↑(𝑏 + 1)))))
474, 8, 12, 16, 24, 46nnind 11076 . . 3 (𝑁 ∈ ℕ → (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) → (𝐴𝑁) < (𝐵𝑁)))
4847impcom 445 . 2 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) ∧ 𝑁 ∈ ℕ) → (𝐴𝑁) < (𝐵𝑁))
49483impa 1278 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵) ∧ 𝑁 ∈ ℕ) → (𝐴𝑁) < (𝐵𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030   class class class wbr 4685  (class class class)co 6690  cc 9972  cr 9973  0cc0 9974  1c1 9975   + caddc 9977   · cmul 9979   < clt 10112  cle 10113  cn 11058  0cn0 11330  cexp 12900
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-n0 11331  df-z 11416  df-uz 11726  df-seq 12842  df-exp 12901
This theorem is referenced by:  rpexpmord  37830
  Copyright terms: Public domain W3C validator