![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > expnass | Structured version Visualization version GIF version |
Description: A counterexample showing that exponentiation is not associative. (Contributed by Stefan Allan and Gérard Lang, 21-Sep-2010.) |
Ref | Expression |
---|---|
expnass | ⊢ ((3↑3)↑3) < (3↑(3↑3)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3cn 11287 | . . 3 ⊢ 3 ∈ ℂ | |
2 | 3nn0 11502 | . . 3 ⊢ 3 ∈ ℕ0 | |
3 | expmul 13099 | . . 3 ⊢ ((3 ∈ ℂ ∧ 3 ∈ ℕ0 ∧ 3 ∈ ℕ0) → (3↑(3 · 3)) = ((3↑3)↑3)) | |
4 | 1, 2, 2, 3 | mp3an 1573 | . 2 ⊢ (3↑(3 · 3)) = ((3↑3)↑3) |
5 | 3re 11286 | . . 3 ⊢ 3 ∈ ℝ | |
6 | 2, 2 | nn0mulcli 11523 | . . . 4 ⊢ (3 · 3) ∈ ℕ0 |
7 | 6 | nn0zi 11594 | . . 3 ⊢ (3 · 3) ∈ ℤ |
8 | 2, 2 | nn0expcli 13080 | . . . 4 ⊢ (3↑3) ∈ ℕ0 |
9 | 8 | nn0zi 11594 | . . 3 ⊢ (3↑3) ∈ ℤ |
10 | 1lt3 11388 | . . . 4 ⊢ 1 < 3 | |
11 | 1 | sqvali 13137 | . . . . 5 ⊢ (3↑2) = (3 · 3) |
12 | 2z 11601 | . . . . . 6 ⊢ 2 ∈ ℤ | |
13 | 3z 11602 | . . . . . 6 ⊢ 3 ∈ ℤ | |
14 | 2lt3 11387 | . . . . . . 7 ⊢ 2 < 3 | |
15 | ltexp2a 13106 | . . . . . . 7 ⊢ (((3 ∈ ℝ ∧ 2 ∈ ℤ ∧ 3 ∈ ℤ) ∧ (1 < 3 ∧ 2 < 3)) → (3↑2) < (3↑3)) | |
16 | 10, 14, 15 | mpanr12 723 | . . . . . 6 ⊢ ((3 ∈ ℝ ∧ 2 ∈ ℤ ∧ 3 ∈ ℤ) → (3↑2) < (3↑3)) |
17 | 5, 12, 13, 16 | mp3an 1573 | . . . . 5 ⊢ (3↑2) < (3↑3) |
18 | 11, 17 | eqbrtrri 4827 | . . . 4 ⊢ (3 · 3) < (3↑3) |
19 | ltexp2a 13106 | . . . 4 ⊢ (((3 ∈ ℝ ∧ (3 · 3) ∈ ℤ ∧ (3↑3) ∈ ℤ) ∧ (1 < 3 ∧ (3 · 3) < (3↑3))) → (3↑(3 · 3)) < (3↑(3↑3))) | |
20 | 10, 18, 19 | mpanr12 723 | . . 3 ⊢ ((3 ∈ ℝ ∧ (3 · 3) ∈ ℤ ∧ (3↑3) ∈ ℤ) → (3↑(3 · 3)) < (3↑(3↑3))) |
21 | 5, 7, 9, 20 | mp3an 1573 | . 2 ⊢ (3↑(3 · 3)) < (3↑(3↑3)) |
22 | 4, 21 | eqbrtrri 4827 | 1 ⊢ ((3↑3)↑3) < (3↑(3↑3)) |
Colors of variables: wff setvar class |
Syntax hints: ∧ w3a 1072 = wceq 1632 ∈ wcel 2139 class class class wbr 4804 (class class class)co 6813 ℂcc 10126 ℝcr 10127 1c1 10129 · cmul 10133 < clt 10266 2c2 11262 3c3 11263 ℕ0cn0 11484 ℤcz 11569 ↑cexp 13054 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-cnex 10184 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 ax-pre-ltadd 10204 ax-pre-mulgt0 10205 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-om 7231 df-2nd 7334 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-er 7911 df-en 8122 df-dom 8123 df-sdom 8124 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 df-sub 10460 df-neg 10461 df-div 10877 df-nn 11213 df-2 11271 df-3 11272 df-n0 11485 df-z 11570 df-uz 11880 df-rp 12026 df-seq 12996 df-exp 13055 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |