Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  expnegico01 Structured version   Visualization version   GIF version

Theorem expnegico01 42097
Description: An integer greater than 1 to the power of a negative integer is in the closed-below, open-above interval between 0 and 1. (Contributed by AV, 24-May-2020.)
Assertion
Ref Expression
expnegico01 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → (𝐵𝑁) ∈ (0[,)1))

Proof of Theorem expnegico01
StepHypRef Expression
1 eluzelre 11530 . . . . . 6 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ ℝ)
21adantr 479 . . . . 5 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → 𝐵 ∈ ℝ)
3 eluz2nn 11558 . . . . . . 7 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ ℕ)
43nnne0d 10912 . . . . . 6 (𝐵 ∈ (ℤ‘2) → 𝐵 ≠ 0)
54adantr 479 . . . . 5 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → 𝐵 ≠ 0)
6 simpr 475 . . . . 5 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ)
72, 5, 63jca 1234 . . . 4 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ∧ 𝑁 ∈ ℤ))
873adant3 1073 . . 3 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ∧ 𝑁 ∈ ℤ))
9 reexpclz 12697 . . 3 ((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝐵𝑁) ∈ ℝ)
108, 9syl 17 . 2 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → (𝐵𝑁) ∈ ℝ)
11 0red 9897 . . 3 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → 0 ∈ ℝ)
1213ad2ant1 1074 . . . 4 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → 𝐵 ∈ ℝ)
1343ad2ant1 1074 . . . 4 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → 𝐵 ≠ 0)
14 simp2 1054 . . . 4 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → 𝑁 ∈ ℤ)
1512, 13, 14reexpclzd 12851 . . 3 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → (𝐵𝑁) ∈ ℝ)
163nngt0d 10911 . . . . 5 (𝐵 ∈ (ℤ‘2) → 0 < 𝐵)
17163ad2ant1 1074 . . . 4 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → 0 < 𝐵)
18 expgt0 12710 . . . 4 ((𝐵 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 0 < 𝐵) → 0 < (𝐵𝑁))
1912, 14, 17, 18syl3anc 1317 . . 3 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → 0 < (𝐵𝑁))
2011, 15, 19ltled 10036 . 2 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → 0 ≤ (𝐵𝑁))
21 0zd 11222 . . . 4 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → 0 ∈ ℤ)
22 eluz2gt1 11592 . . . . 5 (𝐵 ∈ (ℤ‘2) → 1 < 𝐵)
23223ad2ant1 1074 . . . 4 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → 1 < 𝐵)
24 simp3 1055 . . . 4 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → 𝑁 < 0)
25 ltexp2a 12729 . . . 4 (((𝐵 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 0 ∈ ℤ) ∧ (1 < 𝐵𝑁 < 0)) → (𝐵𝑁) < (𝐵↑0))
2612, 14, 21, 23, 24, 25syl32anc 1325 . . 3 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → (𝐵𝑁) < (𝐵↑0))
27 eluzelcn 11531 . . . . . 6 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ ℂ)
2827exp0d 12819 . . . . 5 (𝐵 ∈ (ℤ‘2) → (𝐵↑0) = 1)
2928eqcomd 2615 . . . 4 (𝐵 ∈ (ℤ‘2) → 1 = (𝐵↑0))
30293ad2ant1 1074 . . 3 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → 1 = (𝐵↑0))
3126, 30breqtrrd 4605 . 2 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → (𝐵𝑁) < 1)
32 0re 9896 . . . 4 0 ∈ ℝ
33 1re 9895 . . . . 5 1 ∈ ℝ
3433rexri 9948 . . . 4 1 ∈ ℝ*
3532, 34pm3.2i 469 . . 3 (0 ∈ ℝ ∧ 1 ∈ ℝ*)
36 elico2 12064 . . 3 ((0 ∈ ℝ ∧ 1 ∈ ℝ*) → ((𝐵𝑁) ∈ (0[,)1) ↔ ((𝐵𝑁) ∈ ℝ ∧ 0 ≤ (𝐵𝑁) ∧ (𝐵𝑁) < 1)))
3735, 36mp1i 13 . 2 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → ((𝐵𝑁) ∈ (0[,)1) ↔ ((𝐵𝑁) ∈ ℝ ∧ 0 ≤ (𝐵𝑁) ∧ (𝐵𝑁) < 1)))
3810, 20, 31, 37mpbir3and 1237 1 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → (𝐵𝑁) ∈ (0[,)1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382  w3a 1030   = wceq 1474  wcel 1976  wne 2779   class class class wbr 4577  cfv 5790  (class class class)co 6527  cr 9791  0cc0 9792  1c1 9793  *cxr 9929   < clt 9930  cle 9931  2c2 10917  cz 11210  cuz 11519  [,)cico 12004  cexp 12677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6935  df-2nd 7037  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-er 7606  df-en 7819  df-dom 7820  df-sdom 7821  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-div 10534  df-nn 10868  df-2 10926  df-n0 11140  df-z 11211  df-uz 11520  df-rp 11665  df-ico 12008  df-seq 12619  df-exp 12678
This theorem is referenced by:  digexp  42194
  Copyright terms: Public domain W3C validator