MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expnlbnd Structured version   Visualization version   GIF version

Theorem expnlbnd 13588
Description: The reciprocal of exponentiation with a mantissa greater than 1 has no lower bound. (Contributed by NM, 18-Jul-2008.)
Assertion
Ref Expression
expnlbnd ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) → ∃𝑘 ∈ ℕ (1 / (𝐵𝑘)) < 𝐴)
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘

Proof of Theorem expnlbnd
StepHypRef Expression
1 rpre 12391 . . . 4 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
2 rpne0 12399 . . . 4 (𝐴 ∈ ℝ+𝐴 ≠ 0)
31, 2rereccld 11461 . . 3 (𝐴 ∈ ℝ+ → (1 / 𝐴) ∈ ℝ)
4 expnbnd 13587 . . 3 (((1 / 𝐴) ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → ∃𝑘 ∈ ℕ (1 / 𝐴) < (𝐵𝑘))
53, 4syl3an1 1159 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) → ∃𝑘 ∈ ℕ (1 / 𝐴) < (𝐵𝑘))
6 rpregt0 12397 . . . . 5 (𝐴 ∈ ℝ+ → (𝐴 ∈ ℝ ∧ 0 < 𝐴))
763ad2ant1 1129 . . . 4 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) → (𝐴 ∈ ℝ ∧ 0 < 𝐴))
8 nnnn0 11898 . . . . . . . 8 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
9 reexpcl 13440 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → (𝐵𝑘) ∈ ℝ)
108, 9sylan2 594 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (𝐵𝑘) ∈ ℝ)
1110adantlr 713 . . . . . 6 (((𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑘 ∈ ℕ) → (𝐵𝑘) ∈ ℝ)
12 simpll 765 . . . . . . 7 (((𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑘 ∈ ℕ) → 𝐵 ∈ ℝ)
13 nnz 11998 . . . . . . . 8 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
1413adantl 484 . . . . . . 7 (((𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℤ)
15 0lt1 11156 . . . . . . . . . 10 0 < 1
16 0re 10637 . . . . . . . . . . 11 0 ∈ ℝ
17 1re 10635 . . . . . . . . . . 11 1 ∈ ℝ
18 lttr 10711 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 < 1 ∧ 1 < 𝐵) → 0 < 𝐵))
1916, 17, 18mp3an12 1447 . . . . . . . . . 10 (𝐵 ∈ ℝ → ((0 < 1 ∧ 1 < 𝐵) → 0 < 𝐵))
2015, 19mpani 694 . . . . . . . . 9 (𝐵 ∈ ℝ → (1 < 𝐵 → 0 < 𝐵))
2120imp 409 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 1 < 𝐵) → 0 < 𝐵)
2221adantr 483 . . . . . . 7 (((𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑘 ∈ ℕ) → 0 < 𝐵)
23 expgt0 13456 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝑘 ∈ ℤ ∧ 0 < 𝐵) → 0 < (𝐵𝑘))
2412, 14, 22, 23syl3anc 1367 . . . . . 6 (((𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑘 ∈ ℕ) → 0 < (𝐵𝑘))
2511, 24jca 514 . . . . 5 (((𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑘 ∈ ℕ) → ((𝐵𝑘) ∈ ℝ ∧ 0 < (𝐵𝑘)))
26253adantl1 1162 . . . 4 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑘 ∈ ℕ) → ((𝐵𝑘) ∈ ℝ ∧ 0 < (𝐵𝑘)))
27 ltrec1 11521 . . . 4 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ ((𝐵𝑘) ∈ ℝ ∧ 0 < (𝐵𝑘))) → ((1 / 𝐴) < (𝐵𝑘) ↔ (1 / (𝐵𝑘)) < 𝐴))
287, 26, 27syl2an2r 683 . . 3 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑘 ∈ ℕ) → ((1 / 𝐴) < (𝐵𝑘) ↔ (1 / (𝐵𝑘)) < 𝐴))
2928rexbidva 3296 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) → (∃𝑘 ∈ ℕ (1 / 𝐴) < (𝐵𝑘) ↔ ∃𝑘 ∈ ℕ (1 / (𝐵𝑘)) < 𝐴))
305, 29mpbid 234 1 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) → ∃𝑘 ∈ ℕ (1 / (𝐵𝑘)) < 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083  wcel 2110  wrex 3139   class class class wbr 5059  (class class class)co 7150  cr 10530  0cc0 10531  1c1 10532   < clt 10669   / cdiv 11291  cn 11632  0cn0 11891  cz 11975  +crp 12383  cexp 13423
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-sup 8900  df-inf 8901  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-n0 11892  df-z 11976  df-uz 12238  df-rp 12384  df-fl 13156  df-seq 13364  df-exp 13424
This theorem is referenced by:  expnlbnd2  13589  opnmbllem  24196  opnmbllem0  34922  heiborlem7  35089
  Copyright terms: Public domain W3C validator