![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > expp1 | Structured version Visualization version GIF version |
Description: Value of a complex number raised to a nonnegative integer power plus one. Part of Definition 10-4.1 of [Gleason] p. 134. (Contributed by NM, 20-May-2005.) (Revised by Mario Carneiro, 2-Jul-2013.) |
Ref | Expression |
---|---|
expp1 | ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴↑(𝑁 + 1)) = ((𝐴↑𝑁) · 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnn0 11332 | . 2 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) | |
2 | seqp1 12856 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘1) → (seq1( · , (ℕ × {𝐴}))‘(𝑁 + 1)) = ((seq1( · , (ℕ × {𝐴}))‘𝑁) · ((ℕ × {𝐴})‘(𝑁 + 1)))) | |
3 | nnuz 11761 | . . . . . . 7 ⊢ ℕ = (ℤ≥‘1) | |
4 | 2, 3 | eleq2s 2748 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (seq1( · , (ℕ × {𝐴}))‘(𝑁 + 1)) = ((seq1( · , (ℕ × {𝐴}))‘𝑁) · ((ℕ × {𝐴})‘(𝑁 + 1)))) |
5 | 4 | adantl 481 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (seq1( · , (ℕ × {𝐴}))‘(𝑁 + 1)) = ((seq1( · , (ℕ × {𝐴}))‘𝑁) · ((ℕ × {𝐴})‘(𝑁 + 1)))) |
6 | peano2nn 11070 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ) | |
7 | fvconst2g 6508 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ (𝑁 + 1) ∈ ℕ) → ((ℕ × {𝐴})‘(𝑁 + 1)) = 𝐴) | |
8 | 6, 7 | sylan2 490 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((ℕ × {𝐴})‘(𝑁 + 1)) = 𝐴) |
9 | 8 | oveq2d 6706 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((seq1( · , (ℕ × {𝐴}))‘𝑁) · ((ℕ × {𝐴})‘(𝑁 + 1))) = ((seq1( · , (ℕ × {𝐴}))‘𝑁) · 𝐴)) |
10 | 5, 9 | eqtrd 2685 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (seq1( · , (ℕ × {𝐴}))‘(𝑁 + 1)) = ((seq1( · , (ℕ × {𝐴}))‘𝑁) · 𝐴)) |
11 | expnnval 12903 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ (𝑁 + 1) ∈ ℕ) → (𝐴↑(𝑁 + 1)) = (seq1( · , (ℕ × {𝐴}))‘(𝑁 + 1))) | |
12 | 6, 11 | sylan2 490 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝐴↑(𝑁 + 1)) = (seq1( · , (ℕ × {𝐴}))‘(𝑁 + 1))) |
13 | expnnval 12903 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝐴↑𝑁) = (seq1( · , (ℕ × {𝐴}))‘𝑁)) | |
14 | 13 | oveq1d 6705 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((𝐴↑𝑁) · 𝐴) = ((seq1( · , (ℕ × {𝐴}))‘𝑁) · 𝐴)) |
15 | 10, 12, 14 | 3eqtr4d 2695 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝐴↑(𝑁 + 1)) = ((𝐴↑𝑁) · 𝐴)) |
16 | exp1 12906 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (𝐴↑1) = 𝐴) | |
17 | mulid2 10076 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴) | |
18 | 16, 17 | eqtr4d 2688 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (𝐴↑1) = (1 · 𝐴)) |
19 | 18 | adantr 480 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 = 0) → (𝐴↑1) = (1 · 𝐴)) |
20 | simpr 476 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 = 0) → 𝑁 = 0) | |
21 | 20 | oveq1d 6705 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 = 0) → (𝑁 + 1) = (0 + 1)) |
22 | 0p1e1 11170 | . . . . . 6 ⊢ (0 + 1) = 1 | |
23 | 21, 22 | syl6eq 2701 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 = 0) → (𝑁 + 1) = 1) |
24 | 23 | oveq2d 6706 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 = 0) → (𝐴↑(𝑁 + 1)) = (𝐴↑1)) |
25 | oveq2 6698 | . . . . . 6 ⊢ (𝑁 = 0 → (𝐴↑𝑁) = (𝐴↑0)) | |
26 | exp0 12904 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (𝐴↑0) = 1) | |
27 | 25, 26 | sylan9eqr 2707 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 = 0) → (𝐴↑𝑁) = 1) |
28 | 27 | oveq1d 6705 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 = 0) → ((𝐴↑𝑁) · 𝐴) = (1 · 𝐴)) |
29 | 19, 24, 28 | 3eqtr4d 2695 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 = 0) → (𝐴↑(𝑁 + 1)) = ((𝐴↑𝑁) · 𝐴)) |
30 | 15, 29 | jaodan 843 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) → (𝐴↑(𝑁 + 1)) = ((𝐴↑𝑁) · 𝐴)) |
31 | 1, 30 | sylan2b 491 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴↑(𝑁 + 1)) = ((𝐴↑𝑁) · 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 382 ∧ wa 383 = wceq 1523 ∈ wcel 2030 {csn 4210 × cxp 5141 ‘cfv 5926 (class class class)co 6690 ℂcc 9972 0cc0 9974 1c1 9975 + caddc 9977 · cmul 9979 ℕcn 11058 ℕ0cn0 11330 ℤ≥cuz 11725 seqcseq 12841 ↑cexp 12900 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-n0 11331 df-z 11416 df-uz 11726 df-seq 12842 df-exp 12901 |
This theorem is referenced by: expcllem 12911 expm1t 12928 expeq0 12930 mulexp 12939 expadd 12942 expmul 12945 leexp2r 12958 leexp1a 12959 sqval 12962 cu2 13003 i3 13006 binom3 13025 bernneq 13030 modexp 13039 expp1d 13049 faclbnd 13117 faclbnd2 13118 faclbnd4lem1 13120 faclbnd6 13126 cjexp 13934 absexp 14088 binomlem 14605 climcndslem1 14625 climcndslem2 14626 geolim 14645 geo2sum 14648 efexp 14875 demoivreALT 14975 rpnnen2lem11 14997 pwp1fsum 15161 prmdvdsexp 15474 pcexp 15611 prmreclem6 15672 decexp2 15826 numexpp1 15829 cnfldexp 19827 expcn 22722 mbfi1fseqlem5 23531 dvexp 23761 aaliou3lem2 24143 tangtx 24302 cxpmul2 24480 mcubic 24619 cubic2 24620 binom4 24622 dquartlem2 24624 quart1lem 24627 quart1 24628 quartlem1 24629 log2cnv 24716 log2ublem2 24719 log2ub 24721 basellem3 24854 chtublem 24981 perfectlem1 24999 perfectlem2 25000 bclbnd 25050 bposlem8 25061 dchrisum0flblem1 25242 pntlemo 25341 qabvexp 25360 psgnfzto1st 29983 oddpwdc 30544 hgt750lem 30857 subfacval2 31295 sinccvglem 31692 heiborlem6 33745 bfplem1 33751 pwdif 41826 2exp7 41839 perfectALTVlem1 41955 perfectALTVlem2 41956 altgsumbcALT 42456 |
Copyright terms: Public domain | W3C validator |