MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f0rn0 Structured version   Visualization version   GIF version

Theorem f0rn0 5988
Description: If there is no element in the range of a function, its domain must be empty. (Contributed by Alexander van der Vekens, 12-Jul-2018.)
Assertion
Ref Expression
f0rn0 ((𝐸:𝑋𝑌 ∧ ¬ ∃𝑦𝑌 𝑦 ∈ ran 𝐸) → 𝑋 = ∅)
Distinct variable groups:   𝑦,𝐸   𝑦,𝑌
Allowed substitution hint:   𝑋(𝑦)

Proof of Theorem f0rn0
StepHypRef Expression
1 fdm 5950 . . 3 (𝐸:𝑋𝑌 → dom 𝐸 = 𝑋)
2 frn 5952 . . . . . . . . 9 (𝐸:𝑋𝑌 → ran 𝐸𝑌)
3 ralnex 2974 . . . . . . . . . 10 (∀𝑦𝑌 ¬ 𝑦 ∈ ran 𝐸 ↔ ¬ ∃𝑦𝑌 𝑦 ∈ ran 𝐸)
4 disj 3968 . . . . . . . . . . 11 ((𝑌 ∩ ran 𝐸) = ∅ ↔ ∀𝑦𝑌 ¬ 𝑦 ∈ ran 𝐸)
5 df-ss 3553 . . . . . . . . . . . 12 (ran 𝐸𝑌 ↔ (ran 𝐸𝑌) = ran 𝐸)
6 incom 3766 . . . . . . . . . . . . . 14 (ran 𝐸𝑌) = (𝑌 ∩ ran 𝐸)
76eqeq1i 2614 . . . . . . . . . . . . 13 ((ran 𝐸𝑌) = ran 𝐸 ↔ (𝑌 ∩ ran 𝐸) = ran 𝐸)
8 eqtr2 2629 . . . . . . . . . . . . . 14 (((𝑌 ∩ ran 𝐸) = ran 𝐸 ∧ (𝑌 ∩ ran 𝐸) = ∅) → ran 𝐸 = ∅)
98ex 448 . . . . . . . . . . . . 13 ((𝑌 ∩ ran 𝐸) = ran 𝐸 → ((𝑌 ∩ ran 𝐸) = ∅ → ran 𝐸 = ∅))
107, 9sylbi 205 . . . . . . . . . . . 12 ((ran 𝐸𝑌) = ran 𝐸 → ((𝑌 ∩ ran 𝐸) = ∅ → ran 𝐸 = ∅))
115, 10sylbi 205 . . . . . . . . . . 11 (ran 𝐸𝑌 → ((𝑌 ∩ ran 𝐸) = ∅ → ran 𝐸 = ∅))
124, 11syl5bir 231 . . . . . . . . . 10 (ran 𝐸𝑌 → (∀𝑦𝑌 ¬ 𝑦 ∈ ran 𝐸 → ran 𝐸 = ∅))
133, 12syl5bir 231 . . . . . . . . 9 (ran 𝐸𝑌 → (¬ ∃𝑦𝑌 𝑦 ∈ ran 𝐸 → ran 𝐸 = ∅))
142, 13syl 17 . . . . . . . 8 (𝐸:𝑋𝑌 → (¬ ∃𝑦𝑌 𝑦 ∈ ran 𝐸 → ran 𝐸 = ∅))
1514imp 443 . . . . . . 7 ((𝐸:𝑋𝑌 ∧ ¬ ∃𝑦𝑌 𝑦 ∈ ran 𝐸) → ran 𝐸 = ∅)
1615adantl 480 . . . . . 6 ((dom 𝐸 = 𝑋 ∧ (𝐸:𝑋𝑌 ∧ ¬ ∃𝑦𝑌 𝑦 ∈ ran 𝐸)) → ran 𝐸 = ∅)
17 dm0rn0 5250 . . . . . 6 (dom 𝐸 = ∅ ↔ ran 𝐸 = ∅)
1816, 17sylibr 222 . . . . 5 ((dom 𝐸 = 𝑋 ∧ (𝐸:𝑋𝑌 ∧ ¬ ∃𝑦𝑌 𝑦 ∈ ran 𝐸)) → dom 𝐸 = ∅)
19 eqeq1 2613 . . . . . . 7 (𝑋 = dom 𝐸 → (𝑋 = ∅ ↔ dom 𝐸 = ∅))
2019eqcoms 2617 . . . . . 6 (dom 𝐸 = 𝑋 → (𝑋 = ∅ ↔ dom 𝐸 = ∅))
2120adantr 479 . . . . 5 ((dom 𝐸 = 𝑋 ∧ (𝐸:𝑋𝑌 ∧ ¬ ∃𝑦𝑌 𝑦 ∈ ran 𝐸)) → (𝑋 = ∅ ↔ dom 𝐸 = ∅))
2218, 21mpbird 245 . . . 4 ((dom 𝐸 = 𝑋 ∧ (𝐸:𝑋𝑌 ∧ ¬ ∃𝑦𝑌 𝑦 ∈ ran 𝐸)) → 𝑋 = ∅)
2322exp32 628 . . 3 (dom 𝐸 = 𝑋 → (𝐸:𝑋𝑌 → (¬ ∃𝑦𝑌 𝑦 ∈ ran 𝐸𝑋 = ∅)))
241, 23mpcom 37 . 2 (𝐸:𝑋𝑌 → (¬ ∃𝑦𝑌 𝑦 ∈ ran 𝐸𝑋 = ∅))
2524imp 443 1 ((𝐸:𝑋𝑌 ∧ ¬ ∃𝑦𝑌 𝑦 ∈ ran 𝐸) → 𝑋 = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 194  wa 382   = wceq 1474  wcel 1976  wral 2895  wrex 2896  cin 3538  wss 3539  c0 3873  dom cdm 5028  ran crn 5029  wf 5786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2232  ax-ext 2589  ax-sep 4703  ax-nul 4712  ax-pr 4828
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ral 2900  df-rex 2901  df-rab 2904  df-v 3174  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-nul 3874  df-if 4036  df-sn 4125  df-pr 4127  df-op 4131  df-br 4578  df-opab 4638  df-cnv 5036  df-dm 5038  df-rn 5039  df-fn 5793  df-f 5794
This theorem is referenced by:  usgravd00  26212
  Copyright terms: Public domain W3C validator