Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1eq123d Structured version   Visualization version   GIF version

Theorem f1eq123d 6090
 Description: Equality deduction for one-to-one functions. (Contributed by Mario Carneiro, 27-Jan-2017.)
Hypotheses
Ref Expression
f1eq123d.1 (𝜑𝐹 = 𝐺)
f1eq123d.2 (𝜑𝐴 = 𝐵)
f1eq123d.3 (𝜑𝐶 = 𝐷)
Assertion
Ref Expression
f1eq123d (𝜑 → (𝐹:𝐴1-1𝐶𝐺:𝐵1-1𝐷))

Proof of Theorem f1eq123d
StepHypRef Expression
1 f1eq123d.1 . . 3 (𝜑𝐹 = 𝐺)
2 f1eq1 6055 . . 3 (𝐹 = 𝐺 → (𝐹:𝐴1-1𝐶𝐺:𝐴1-1𝐶))
31, 2syl 17 . 2 (𝜑 → (𝐹:𝐴1-1𝐶𝐺:𝐴1-1𝐶))
4 f1eq123d.2 . . 3 (𝜑𝐴 = 𝐵)
5 f1eq2 6056 . . 3 (𝐴 = 𝐵 → (𝐺:𝐴1-1𝐶𝐺:𝐵1-1𝐶))
64, 5syl 17 . 2 (𝜑 → (𝐺:𝐴1-1𝐶𝐺:𝐵1-1𝐶))
7 f1eq123d.3 . . 3 (𝜑𝐶 = 𝐷)
8 f1eq3 6057 . . 3 (𝐶 = 𝐷 → (𝐺:𝐵1-1𝐶𝐺:𝐵1-1𝐷))
97, 8syl 17 . 2 (𝜑 → (𝐺:𝐵1-1𝐶𝐺:𝐵1-1𝐷))
103, 6, 93bitrd 294 1 (𝜑 → (𝐹:𝐴1-1𝐶𝐺:𝐵1-1𝐷))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   = wceq 1480  –1-1→wf1 5847 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-rab 2921  df-v 3193  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3897  df-if 4064  df-sn 4154  df-pr 4156  df-op 4160  df-br 4619  df-opab 4679  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855 This theorem is referenced by:  f10d  6129  fthf1  16493  cofth  16511  istrkgld  25253  istrkg2ld  25254  isushgr  25847  isuspgr  25935  isusgr  25936  isusgrop  25944  ausgrusgrb  25947  ausgrusgri  25950  usgrstrrepe  26014  uspgr1e  26023  usgrexmpl  26042  usgrres1  26089  usgrexi  26218  uspgr2wlkeq  26405  usgr2trlncl  26519  aciunf1  29296
 Copyright terms: Public domain W3C validator