MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1fi Structured version   Visualization version   GIF version

Theorem f1fi 8198
Description: If a 1-to-1 function has a finite codomain its domain is finite. (Contributed by FL, 31-Jul-2009.) (Revised by Mario Carneiro, 24-Jun-2015.)
Assertion
Ref Expression
f1fi ((𝐵 ∈ Fin ∧ 𝐹:𝐴1-1𝐵) → 𝐴 ∈ Fin)

Proof of Theorem f1fi
StepHypRef Expression
1 f1f 6060 . . . 4 (𝐹:𝐴1-1𝐵𝐹:𝐴𝐵)
2 frn 6012 . . . 4 (𝐹:𝐴𝐵 → ran 𝐹𝐵)
31, 2syl 17 . . 3 (𝐹:𝐴1-1𝐵 → ran 𝐹𝐵)
4 ssfi 8125 . . 3 ((𝐵 ∈ Fin ∧ ran 𝐹𝐵) → ran 𝐹 ∈ Fin)
53, 4sylan2 491 . 2 ((𝐵 ∈ Fin ∧ 𝐹:𝐴1-1𝐵) → ran 𝐹 ∈ Fin)
6 f1f1orn 6107 . . . 4 (𝐹:𝐴1-1𝐵𝐹:𝐴1-1-onto→ran 𝐹)
76adantl 482 . . 3 ((𝐵 ∈ Fin ∧ 𝐹:𝐴1-1𝐵) → 𝐹:𝐴1-1-onto→ran 𝐹)
8 f1ocnv 6108 . . 3 (𝐹:𝐴1-1-onto→ran 𝐹𝐹:ran 𝐹1-1-onto𝐴)
9 f1ofo 6103 . . 3 (𝐹:ran 𝐹1-1-onto𝐴𝐹:ran 𝐹onto𝐴)
107, 8, 93syl 18 . 2 ((𝐵 ∈ Fin ∧ 𝐹:𝐴1-1𝐵) → 𝐹:ran 𝐹onto𝐴)
11 fofi 8197 . 2 ((ran 𝐹 ∈ Fin ∧ 𝐹:ran 𝐹onto𝐴) → 𝐴 ∈ Fin)
125, 10, 11syl2anc 692 1 ((𝐵 ∈ Fin ∧ 𝐹:𝐴1-1𝐵) → 𝐴 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  wcel 1992  wss 3560  ccnv 5078  ran crn 5080  wf 5846  1-1wf1 5847  ontowfo 5848  1-1-ontowf1o 5849  Fincfn 7900
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3193  df-sbc 3423  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-br 4619  df-opab 4679  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-om 7014  df-1o 7506  df-er 7688  df-en 7901  df-dom 7902  df-fin 7904
This theorem is referenced by:  ixpfi2  8209  fsumvma  24833  edgusgrnbfin  26156  fourierdlem51  39668  prminf2  40787
  Copyright terms: Public domain W3C validator