MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1imass Structured version   Visualization version   GIF version

Theorem f1imass 6684
Description: Taking images under a one-to-one function preserves subsets. (Contributed by Stefan O'Rear, 30-Oct-2014.)
Assertion
Ref Expression
f1imass ((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) → ((𝐹𝐶) ⊆ (𝐹𝐷) ↔ 𝐶𝐷))

Proof of Theorem f1imass
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 simplrl 819 . . . . . . 7 (((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) ∧ (𝐹𝐶) ⊆ (𝐹𝐷)) → 𝐶𝐴)
21sseld 3743 . . . . . 6 (((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) ∧ (𝐹𝐶) ⊆ (𝐹𝐷)) → (𝑎𝐶𝑎𝐴))
3 simplr 809 . . . . . . . . 9 ((((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) ∧ (𝐹𝐶) ⊆ (𝐹𝐷)) ∧ 𝑎𝐴) → (𝐹𝐶) ⊆ (𝐹𝐷))
43sseld 3743 . . . . . . . 8 ((((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) ∧ (𝐹𝐶) ⊆ (𝐹𝐷)) ∧ 𝑎𝐴) → ((𝐹𝑎) ∈ (𝐹𝐶) → (𝐹𝑎) ∈ (𝐹𝐷)))
5 simplll 815 . . . . . . . . 9 ((((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) ∧ (𝐹𝐶) ⊆ (𝐹𝐷)) ∧ 𝑎𝐴) → 𝐹:𝐴1-1𝐵)
6 simpr 479 . . . . . . . . 9 ((((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) ∧ (𝐹𝐶) ⊆ (𝐹𝐷)) ∧ 𝑎𝐴) → 𝑎𝐴)
7 simp1rl 1305 . . . . . . . . . 10 (((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) ∧ (𝐹𝐶) ⊆ (𝐹𝐷) ∧ 𝑎𝐴) → 𝐶𝐴)
873expa 1112 . . . . . . . . 9 ((((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) ∧ (𝐹𝐶) ⊆ (𝐹𝐷)) ∧ 𝑎𝐴) → 𝐶𝐴)
9 f1elima 6683 . . . . . . . . 9 ((𝐹:𝐴1-1𝐵𝑎𝐴𝐶𝐴) → ((𝐹𝑎) ∈ (𝐹𝐶) ↔ 𝑎𝐶))
105, 6, 8, 9syl3anc 1477 . . . . . . . 8 ((((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) ∧ (𝐹𝐶) ⊆ (𝐹𝐷)) ∧ 𝑎𝐴) → ((𝐹𝑎) ∈ (𝐹𝐶) ↔ 𝑎𝐶))
11 simp1rr 1306 . . . . . . . . . 10 (((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) ∧ (𝐹𝐶) ⊆ (𝐹𝐷) ∧ 𝑎𝐴) → 𝐷𝐴)
12113expa 1112 . . . . . . . . 9 ((((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) ∧ (𝐹𝐶) ⊆ (𝐹𝐷)) ∧ 𝑎𝐴) → 𝐷𝐴)
13 f1elima 6683 . . . . . . . . 9 ((𝐹:𝐴1-1𝐵𝑎𝐴𝐷𝐴) → ((𝐹𝑎) ∈ (𝐹𝐷) ↔ 𝑎𝐷))
145, 6, 12, 13syl3anc 1477 . . . . . . . 8 ((((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) ∧ (𝐹𝐶) ⊆ (𝐹𝐷)) ∧ 𝑎𝐴) → ((𝐹𝑎) ∈ (𝐹𝐷) ↔ 𝑎𝐷))
154, 10, 143imtr3d 282 . . . . . . 7 ((((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) ∧ (𝐹𝐶) ⊆ (𝐹𝐷)) ∧ 𝑎𝐴) → (𝑎𝐶𝑎𝐷))
1615ex 449 . . . . . 6 (((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) ∧ (𝐹𝐶) ⊆ (𝐹𝐷)) → (𝑎𝐴 → (𝑎𝐶𝑎𝐷)))
172, 16syld 47 . . . . 5 (((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) ∧ (𝐹𝐶) ⊆ (𝐹𝐷)) → (𝑎𝐶 → (𝑎𝐶𝑎𝐷)))
1817pm2.43d 53 . . . 4 (((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) ∧ (𝐹𝐶) ⊆ (𝐹𝐷)) → (𝑎𝐶𝑎𝐷))
1918ssrdv 3750 . . 3 (((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) ∧ (𝐹𝐶) ⊆ (𝐹𝐷)) → 𝐶𝐷)
2019ex 449 . 2 ((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) → ((𝐹𝐶) ⊆ (𝐹𝐷) → 𝐶𝐷))
21 imass2 5659 . 2 (𝐶𝐷 → (𝐹𝐶) ⊆ (𝐹𝐷))
2220, 21impbid1 215 1 ((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) → ((𝐹𝐶) ⊆ (𝐹𝐷) ↔ 𝐶𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  wcel 2139  wss 3715  cima 5269  1-1wf1 6046  cfv 6049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pr 5055
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-sbc 3577  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-br 4805  df-opab 4865  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fv 6057
This theorem is referenced by:  f1imaeq  6685  f1imapss  6686  enfin2i  9335  tsmsf1o  22149
  Copyright terms: Public domain W3C validator