Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1mpt Structured version   Visualization version   GIF version

Theorem f1mpt 6558
 Description: Express injection for a mapping operation. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
f1mpt.1 𝐹 = (𝑥𝐴𝐶)
f1mpt.2 (𝑥 = 𝑦𝐶 = 𝐷)
Assertion
Ref Expression
f1mpt (𝐹:𝐴1-1𝐵 ↔ (∀𝑥𝐴 𝐶𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝐶 = 𝐷𝑥 = 𝑦)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑦,𝐶   𝑥,𝐷   𝑦,𝐹
Allowed substitution hints:   𝐶(𝑥)   𝐷(𝑦)   𝐹(𝑥)

Proof of Theorem f1mpt
StepHypRef Expression
1 f1mpt.1 . . . 4 𝐹 = (𝑥𝐴𝐶)
2 nfmpt1 4780 . . . 4 𝑥(𝑥𝐴𝐶)
31, 2nfcxfr 2791 . . 3 𝑥𝐹
4 nfcv 2793 . . 3 𝑦𝐹
53, 4dff13f 6553 . 2 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
61fmpt 6421 . . 3 (∀𝑥𝐴 𝐶𝐵𝐹:𝐴𝐵)
76anbi1i 731 . 2 ((∀𝑥𝐴 𝐶𝐵 ∧ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)) ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
8 f1mpt.2 . . . . . . 7 (𝑥 = 𝑦𝐶 = 𝐷)
98eleq1d 2715 . . . . . 6 (𝑥 = 𝑦 → (𝐶𝐵𝐷𝐵))
109cbvralv 3201 . . . . 5 (∀𝑥𝐴 𝐶𝐵 ↔ ∀𝑦𝐴 𝐷𝐵)
11 raaanv 4116 . . . . . 6 (∀𝑥𝐴𝑦𝐴 (𝐶𝐵𝐷𝐵) ↔ (∀𝑥𝐴 𝐶𝐵 ∧ ∀𝑦𝐴 𝐷𝐵))
121fvmpt2 6330 . . . . . . . . . . . . . 14 ((𝑥𝐴𝐶𝐵) → (𝐹𝑥) = 𝐶)
138, 1fvmptg 6319 . . . . . . . . . . . . . 14 ((𝑦𝐴𝐷𝐵) → (𝐹𝑦) = 𝐷)
1412, 13eqeqan12d 2667 . . . . . . . . . . . . 13 (((𝑥𝐴𝐶𝐵) ∧ (𝑦𝐴𝐷𝐵)) → ((𝐹𝑥) = (𝐹𝑦) ↔ 𝐶 = 𝐷))
1514an4s 886 . . . . . . . . . . . 12 (((𝑥𝐴𝑦𝐴) ∧ (𝐶𝐵𝐷𝐵)) → ((𝐹𝑥) = (𝐹𝑦) ↔ 𝐶 = 𝐷))
1615imbi1d 330 . . . . . . . . . . 11 (((𝑥𝐴𝑦𝐴) ∧ (𝐶𝐵𝐷𝐵)) → (((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦) ↔ (𝐶 = 𝐷𝑥 = 𝑦)))
1716ex 449 . . . . . . . . . 10 ((𝑥𝐴𝑦𝐴) → ((𝐶𝐵𝐷𝐵) → (((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦) ↔ (𝐶 = 𝐷𝑥 = 𝑦))))
1817ralimdva 2991 . . . . . . . . 9 (𝑥𝐴 → (∀𝑦𝐴 (𝐶𝐵𝐷𝐵) → ∀𝑦𝐴 (((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦) ↔ (𝐶 = 𝐷𝑥 = 𝑦))))
19 ralbi 3097 . . . . . . . . 9 (∀𝑦𝐴 (((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦) ↔ (𝐶 = 𝐷𝑥 = 𝑦)) → (∀𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦) ↔ ∀𝑦𝐴 (𝐶 = 𝐷𝑥 = 𝑦)))
2018, 19syl6 35 . . . . . . . 8 (𝑥𝐴 → (∀𝑦𝐴 (𝐶𝐵𝐷𝐵) → (∀𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦) ↔ ∀𝑦𝐴 (𝐶 = 𝐷𝑥 = 𝑦))))
2120ralimia 2979 . . . . . . 7 (∀𝑥𝐴𝑦𝐴 (𝐶𝐵𝐷𝐵) → ∀𝑥𝐴 (∀𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦) ↔ ∀𝑦𝐴 (𝐶 = 𝐷𝑥 = 𝑦)))
22 ralbi 3097 . . . . . . 7 (∀𝑥𝐴 (∀𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦) ↔ ∀𝑦𝐴 (𝐶 = 𝐷𝑥 = 𝑦)) → (∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦) ↔ ∀𝑥𝐴𝑦𝐴 (𝐶 = 𝐷𝑥 = 𝑦)))
2321, 22syl 17 . . . . . 6 (∀𝑥𝐴𝑦𝐴 (𝐶𝐵𝐷𝐵) → (∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦) ↔ ∀𝑥𝐴𝑦𝐴 (𝐶 = 𝐷𝑥 = 𝑦)))
2411, 23sylbir 225 . . . . 5 ((∀𝑥𝐴 𝐶𝐵 ∧ ∀𝑦𝐴 𝐷𝐵) → (∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦) ↔ ∀𝑥𝐴𝑦𝐴 (𝐶 = 𝐷𝑥 = 𝑦)))
2510, 24sylan2b 491 . . . 4 ((∀𝑥𝐴 𝐶𝐵 ∧ ∀𝑥𝐴 𝐶𝐵) → (∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦) ↔ ∀𝑥𝐴𝑦𝐴 (𝐶 = 𝐷𝑥 = 𝑦)))
2625anidms 678 . . 3 (∀𝑥𝐴 𝐶𝐵 → (∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦) ↔ ∀𝑥𝐴𝑦𝐴 (𝐶 = 𝐷𝑥 = 𝑦)))
2726pm5.32i 670 . 2 ((∀𝑥𝐴 𝐶𝐵 ∧ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)) ↔ (∀𝑥𝐴 𝐶𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝐶 = 𝐷𝑥 = 𝑦)))
285, 7, 273bitr2i 288 1 (𝐹:𝐴1-1𝐵 ↔ (∀𝑥𝐴 𝐶𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝐶 = 𝐷𝑥 = 𝑦)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1523   ∈ wcel 2030  ∀wral 2941   ↦ cmpt 4762  ⟶wf 5922  –1-1→wf1 5923  ‘cfv 5926 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fv 5934 This theorem is referenced by:  ismon2  16441  isepi2  16448  uspgredg2v  26161  usgredg2v  26164  aciunf1lem  29590  disjf1  39683
 Copyright terms: Public domain W3C validator