MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1o2sn Structured version   Visualization version   GIF version

Theorem f1o2sn 6362
Description: A singleton with a nested ordered pair is a 1-1 function of the cartesian product of two singleton onto a singleton. (Contributed by AV, 15-Aug-2019.)
Assertion
Ref Expression
f1o2sn ((𝐸𝑉𝑋𝑊) → {⟨⟨𝐸, 𝐸⟩, 𝑋⟩}:({𝐸} × {𝐸})–1-1-onto→{𝑋})

Proof of Theorem f1o2sn
StepHypRef Expression
1 opex 4893 . . 3 𝐸, 𝐸⟩ ∈ V
2 simpr 477 . . 3 ((𝐸𝑉𝑋𝑊) → 𝑋𝑊)
3 f1osng 6134 . . 3 ((⟨𝐸, 𝐸⟩ ∈ V ∧ 𝑋𝑊) → {⟨⟨𝐸, 𝐸⟩, 𝑋⟩}:{⟨𝐸, 𝐸⟩}–1-1-onto→{𝑋})
41, 2, 3sylancr 694 . 2 ((𝐸𝑉𝑋𝑊) → {⟨⟨𝐸, 𝐸⟩, 𝑋⟩}:{⟨𝐸, 𝐸⟩}–1-1-onto→{𝑋})
5 xpsng 6360 . . . . . 6 ((𝐸𝑉𝐸𝑉) → ({𝐸} × {𝐸}) = {⟨𝐸, 𝐸⟩})
65anidms 676 . . . . 5 (𝐸𝑉 → ({𝐸} × {𝐸}) = {⟨𝐸, 𝐸⟩})
76eqcomd 2627 . . . 4 (𝐸𝑉 → {⟨𝐸, 𝐸⟩} = ({𝐸} × {𝐸}))
87adantr 481 . . 3 ((𝐸𝑉𝑋𝑊) → {⟨𝐸, 𝐸⟩} = ({𝐸} × {𝐸}))
9 f1oeq2 6085 . . 3 ({⟨𝐸, 𝐸⟩} = ({𝐸} × {𝐸}) → ({⟨⟨𝐸, 𝐸⟩, 𝑋⟩}:{⟨𝐸, 𝐸⟩}–1-1-onto→{𝑋} ↔ {⟨⟨𝐸, 𝐸⟩, 𝑋⟩}:({𝐸} × {𝐸})–1-1-onto→{𝑋}))
108, 9syl 17 . 2 ((𝐸𝑉𝑋𝑊) → ({⟨⟨𝐸, 𝐸⟩, 𝑋⟩}:{⟨𝐸, 𝐸⟩}–1-1-onto→{𝑋} ↔ {⟨⟨𝐸, 𝐸⟩, 𝑋⟩}:({𝐸} × {𝐸})–1-1-onto→{𝑋}))
114, 10mpbid 222 1 ((𝐸𝑉𝑋𝑊) → {⟨⟨𝐸, 𝐸⟩, 𝑋⟩}:({𝐸} × {𝐸})–1-1-onto→{𝑋})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  Vcvv 3186  {csn 4148  cop 4154   × cxp 5072  1-1-ontowf1o 5846
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pr 4867
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-sn 4149  df-pr 4151  df-op 4155  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854
This theorem is referenced by:  mat1dimelbas  20196
  Copyright terms: Public domain W3C validator