MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1ocnvd Structured version   Visualization version   GIF version

Theorem f1ocnvd 7399
Description: Describe an implicit one-to-one onto function. (Contributed by Mario Carneiro, 30-Apr-2015.)
Hypotheses
Ref Expression
f1od.1 𝐹 = (𝑥𝐴𝐶)
f1od.2 ((𝜑𝑥𝐴) → 𝐶𝑊)
f1od.3 ((𝜑𝑦𝐵) → 𝐷𝑋)
f1od.4 (𝜑 → ((𝑥𝐴𝑦 = 𝐶) ↔ (𝑦𝐵𝑥 = 𝐷)))
Assertion
Ref Expression
f1ocnvd (𝜑 → (𝐹:𝐴1-1-onto𝐵𝐹 = (𝑦𝐵𝐷)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑦,𝐶   𝑥,𝐷   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐶(𝑥)   𝐷(𝑦)   𝐹(𝑥,𝑦)   𝑊(𝑥,𝑦)   𝑋(𝑥,𝑦)

Proof of Theorem f1ocnvd
StepHypRef Expression
1 f1od.2 . . . . 5 ((𝜑𝑥𝐴) → 𝐶𝑊)
21ralrimiva 3185 . . . 4 (𝜑 → ∀𝑥𝐴 𝐶𝑊)
3 f1od.1 . . . . 5 𝐹 = (𝑥𝐴𝐶)
43fnmpt 6491 . . . 4 (∀𝑥𝐴 𝐶𝑊𝐹 Fn 𝐴)
52, 4syl 17 . . 3 (𝜑𝐹 Fn 𝐴)
6 f1od.3 . . . . . 6 ((𝜑𝑦𝐵) → 𝐷𝑋)
76ralrimiva 3185 . . . . 5 (𝜑 → ∀𝑦𝐵 𝐷𝑋)
8 eqid 2824 . . . . . 6 (𝑦𝐵𝐷) = (𝑦𝐵𝐷)
98fnmpt 6491 . . . . 5 (∀𝑦𝐵 𝐷𝑋 → (𝑦𝐵𝐷) Fn 𝐵)
107, 9syl 17 . . . 4 (𝜑 → (𝑦𝐵𝐷) Fn 𝐵)
11 f1od.4 . . . . . . 7 (𝜑 → ((𝑥𝐴𝑦 = 𝐶) ↔ (𝑦𝐵𝑥 = 𝐷)))
1211opabbidv 5135 . . . . . 6 (𝜑 → {⟨𝑦, 𝑥⟩ ∣ (𝑥𝐴𝑦 = 𝐶)} = {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐵𝑥 = 𝐷)})
13 df-mpt 5150 . . . . . . . . 9 (𝑥𝐴𝐶) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐶)}
143, 13eqtri 2847 . . . . . . . 8 𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐶)}
1514cnveqi 5748 . . . . . . 7 𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐶)}
16 cnvopab 6000 . . . . . . 7 {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐶)} = {⟨𝑦, 𝑥⟩ ∣ (𝑥𝐴𝑦 = 𝐶)}
1715, 16eqtri 2847 . . . . . 6 𝐹 = {⟨𝑦, 𝑥⟩ ∣ (𝑥𝐴𝑦 = 𝐶)}
18 df-mpt 5150 . . . . . 6 (𝑦𝐵𝐷) = {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐵𝑥 = 𝐷)}
1912, 17, 183eqtr4g 2884 . . . . 5 (𝜑𝐹 = (𝑦𝐵𝐷))
2019fneq1d 6449 . . . 4 (𝜑 → (𝐹 Fn 𝐵 ↔ (𝑦𝐵𝐷) Fn 𝐵))
2110, 20mpbird 259 . . 3 (𝜑𝐹 Fn 𝐵)
22 dff1o4 6626 . . 3 (𝐹:𝐴1-1-onto𝐵 ↔ (𝐹 Fn 𝐴𝐹 Fn 𝐵))
235, 21, 22sylanbrc 585 . 2 (𝜑𝐹:𝐴1-1-onto𝐵)
2423, 19jca 514 1 (𝜑 → (𝐹:𝐴1-1-onto𝐵𝐹 = (𝑦𝐵𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1536  wcel 2113  wral 3141  {copab 5131  cmpt 5149  ccnv 5557   Fn wfn 6353  1-1-ontowf1o 6357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pr 5333
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ral 3146  df-rab 3150  df-v 3499  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-sn 4571  df-pr 4573  df-op 4577  df-br 5070  df-opab 5132  df-mpt 5150  df-id 5463  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365
This theorem is referenced by:  f1od  7400  f1ocnv2d  7401  pw2f1ocnv  39640
  Copyright terms: Public domain W3C validator