MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1oco Structured version   Visualization version   GIF version

Theorem f1oco 6118
Description: Composition of one-to-one onto functions. (Contributed by NM, 19-Mar-1998.)
Assertion
Ref Expression
f1oco ((𝐹:𝐵1-1-onto𝐶𝐺:𝐴1-1-onto𝐵) → (𝐹𝐺):𝐴1-1-onto𝐶)

Proof of Theorem f1oco
StepHypRef Expression
1 df-f1o 5857 . . 3 (𝐹:𝐵1-1-onto𝐶 ↔ (𝐹:𝐵1-1𝐶𝐹:𝐵onto𝐶))
2 df-f1o 5857 . . 3 (𝐺:𝐴1-1-onto𝐵 ↔ (𝐺:𝐴1-1𝐵𝐺:𝐴onto𝐵))
3 f1co 6069 . . . . 5 ((𝐹:𝐵1-1𝐶𝐺:𝐴1-1𝐵) → (𝐹𝐺):𝐴1-1𝐶)
4 foco 6084 . . . . 5 ((𝐹:𝐵onto𝐶𝐺:𝐴onto𝐵) → (𝐹𝐺):𝐴onto𝐶)
53, 4anim12i 589 . . . 4 (((𝐹:𝐵1-1𝐶𝐺:𝐴1-1𝐵) ∧ (𝐹:𝐵onto𝐶𝐺:𝐴onto𝐵)) → ((𝐹𝐺):𝐴1-1𝐶 ∧ (𝐹𝐺):𝐴onto𝐶))
65an4s 868 . . 3 (((𝐹:𝐵1-1𝐶𝐹:𝐵onto𝐶) ∧ (𝐺:𝐴1-1𝐵𝐺:𝐴onto𝐵)) → ((𝐹𝐺):𝐴1-1𝐶 ∧ (𝐹𝐺):𝐴onto𝐶))
71, 2, 6syl2anb 496 . 2 ((𝐹:𝐵1-1-onto𝐶𝐺:𝐴1-1-onto𝐵) → ((𝐹𝐺):𝐴1-1𝐶 ∧ (𝐹𝐺):𝐴onto𝐶))
8 df-f1o 5857 . 2 ((𝐹𝐺):𝐴1-1-onto𝐶 ↔ ((𝐹𝐺):𝐴1-1𝐶 ∧ (𝐹𝐺):𝐴onto𝐶))
97, 8sylibr 224 1 ((𝐹:𝐵1-1-onto𝐶𝐺:𝐴1-1-onto𝐵) → (𝐹𝐺):𝐴1-1-onto𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  ccom 5083  1-1wf1 5847  ontowfo 5848  1-1-ontowf1o 5849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-sep 4746  ax-nul 4754  ax-pr 4872
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3193  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3897  df-if 4064  df-sn 4154  df-pr 4156  df-op 4160  df-br 4619  df-opab 4679  df-id 4994  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857
This theorem is referenced by:  fveqf1o  6512  isotr  6541  ener  7947  enerOLD  7948  omf1o  8008  enfixsn  8014  oef1o  8540  cnfcom3  8546  infxpenc  8786  ackbij2lem2  9007  canthp1lem2  9420  pwfseqlem5  9430  hashfacen  13173  summolem3  14373  fsumf1o  14382  ackbijnn  14480  prodmolem3  14583  fprodf1o  14596  eulerthlem2  15406  symgcl  17727  pmtrfconj  17802  gsumval3eu  18221  gsumval3lem1  18222  gsumval3  18224  lmimco  20097  resinf1o  24181  motco  25330  counop  28620  eulerpartgbij  30207  derangenlem  30853  subfacp1lem5  30866  poimirlem9  33036  poimirlem15  33042  poimirlem16  33043  poimirlem17  33044  poimirlem19  33046  poimirlem20  33047  rngoisoco  33399  lautco  34849  clsneif1o  37870  neicvgf1o  37880
  Copyright terms: Public domain W3C validator