MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1omvdco2 Structured version   Visualization version   GIF version

Theorem f1omvdco2 17789
Description: If exactly one of two permutations is limited to a set of points, then the composition will not be. (Contributed by Stefan O'Rear, 23-Aug-2015.)
Assertion
Ref Expression
f1omvdco2 ((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴 ∧ (dom (𝐹 ∖ I ) ⊆ 𝑋 ⊻ dom (𝐺 ∖ I ) ⊆ 𝑋)) → ¬ dom ((𝐹𝐺) ∖ I ) ⊆ 𝑋)

Proof of Theorem f1omvdco2
StepHypRef Expression
1 excxor 1466 . . 3 ((dom (𝐹 ∖ I ) ⊆ 𝑋 ⊻ dom (𝐺 ∖ I ) ⊆ 𝑋) ↔ ((dom (𝐹 ∖ I ) ⊆ 𝑋 ∧ ¬ dom (𝐺 ∖ I ) ⊆ 𝑋) ∨ (¬ dom (𝐹 ∖ I ) ⊆ 𝑋 ∧ dom (𝐺 ∖ I ) ⊆ 𝑋)))
2 coass 5613 . . . . . . . . . . . 12 ((𝐹𝐹) ∘ 𝐺) = (𝐹 ∘ (𝐹𝐺))
3 f1ococnv1 6122 . . . . . . . . . . . . . 14 (𝐹:𝐴1-1-onto𝐴 → (𝐹𝐹) = ( I ↾ 𝐴))
43coeq1d 5243 . . . . . . . . . . . . 13 (𝐹:𝐴1-1-onto𝐴 → ((𝐹𝐹) ∘ 𝐺) = (( I ↾ 𝐴) ∘ 𝐺))
5 f1of 6094 . . . . . . . . . . . . . 14 (𝐺:𝐴1-1-onto𝐴𝐺:𝐴𝐴)
6 fcoi2 6036 . . . . . . . . . . . . . 14 (𝐺:𝐴𝐴 → (( I ↾ 𝐴) ∘ 𝐺) = 𝐺)
75, 6syl 17 . . . . . . . . . . . . 13 (𝐺:𝐴1-1-onto𝐴 → (( I ↾ 𝐴) ∘ 𝐺) = 𝐺)
84, 7sylan9eq 2675 . . . . . . . . . . . 12 ((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) → ((𝐹𝐹) ∘ 𝐺) = 𝐺)
92, 8syl5eqr 2669 . . . . . . . . . . 11 ((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) → (𝐹 ∘ (𝐹𝐺)) = 𝐺)
109difeq1d 3705 . . . . . . . . . 10 ((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) → ((𝐹 ∘ (𝐹𝐺)) ∖ I ) = (𝐺 ∖ I ))
1110dmeqd 5286 . . . . . . . . 9 ((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) → dom ((𝐹 ∘ (𝐹𝐺)) ∖ I ) = dom (𝐺 ∖ I ))
1211adantr 481 . . . . . . . 8 (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ⊆ 𝑋 ∧ dom ((𝐹𝐺) ∖ I ) ⊆ 𝑋)) → dom ((𝐹 ∘ (𝐹𝐺)) ∖ I ) = dom (𝐺 ∖ I ))
13 mvdco 17786 . . . . . . . . 9 dom ((𝐹 ∘ (𝐹𝐺)) ∖ I ) ⊆ (dom (𝐹 ∖ I ) ∪ dom ((𝐹𝐺) ∖ I ))
14 f1omvdcnv 17785 . . . . . . . . . . . 12 (𝐹:𝐴1-1-onto𝐴 → dom (𝐹 ∖ I ) = dom (𝐹 ∖ I ))
1514ad2antrr 761 . . . . . . . . . . 11 (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ⊆ 𝑋 ∧ dom ((𝐹𝐺) ∖ I ) ⊆ 𝑋)) → dom (𝐹 ∖ I ) = dom (𝐹 ∖ I ))
16 simprl 793 . . . . . . . . . . 11 (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ⊆ 𝑋 ∧ dom ((𝐹𝐺) ∖ I ) ⊆ 𝑋)) → dom (𝐹 ∖ I ) ⊆ 𝑋)
1715, 16eqsstrd 3618 . . . . . . . . . 10 (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ⊆ 𝑋 ∧ dom ((𝐹𝐺) ∖ I ) ⊆ 𝑋)) → dom (𝐹 ∖ I ) ⊆ 𝑋)
18 simprr 795 . . . . . . . . . 10 (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ⊆ 𝑋 ∧ dom ((𝐹𝐺) ∖ I ) ⊆ 𝑋)) → dom ((𝐹𝐺) ∖ I ) ⊆ 𝑋)
1917, 18unssd 3767 . . . . . . . . 9 (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ⊆ 𝑋 ∧ dom ((𝐹𝐺) ∖ I ) ⊆ 𝑋)) → (dom (𝐹 ∖ I ) ∪ dom ((𝐹𝐺) ∖ I )) ⊆ 𝑋)
2013, 19syl5ss 3594 . . . . . . . 8 (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ⊆ 𝑋 ∧ dom ((𝐹𝐺) ∖ I ) ⊆ 𝑋)) → dom ((𝐹 ∘ (𝐹𝐺)) ∖ I ) ⊆ 𝑋)
2112, 20eqsstr3d 3619 . . . . . . 7 (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ⊆ 𝑋 ∧ dom ((𝐹𝐺) ∖ I ) ⊆ 𝑋)) → dom (𝐺 ∖ I ) ⊆ 𝑋)
2221expr 642 . . . . . 6 (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ dom (𝐹 ∖ I ) ⊆ 𝑋) → (dom ((𝐹𝐺) ∖ I ) ⊆ 𝑋 → dom (𝐺 ∖ I ) ⊆ 𝑋))
2322con3d 148 . . . . 5 (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ dom (𝐹 ∖ I ) ⊆ 𝑋) → (¬ dom (𝐺 ∖ I ) ⊆ 𝑋 → ¬ dom ((𝐹𝐺) ∖ I ) ⊆ 𝑋))
2423expimpd 628 . . . 4 ((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) → ((dom (𝐹 ∖ I ) ⊆ 𝑋 ∧ ¬ dom (𝐺 ∖ I ) ⊆ 𝑋) → ¬ dom ((𝐹𝐺) ∖ I ) ⊆ 𝑋))
25 coass 5613 . . . . . . . . . . . . 13 ((𝐹𝐺) ∘ 𝐺) = (𝐹 ∘ (𝐺𝐺))
26 f1ococnv2 6120 . . . . . . . . . . . . . . 15 (𝐺:𝐴1-1-onto𝐴 → (𝐺𝐺) = ( I ↾ 𝐴))
2726coeq2d 5244 . . . . . . . . . . . . . 14 (𝐺:𝐴1-1-onto𝐴 → (𝐹 ∘ (𝐺𝐺)) = (𝐹 ∘ ( I ↾ 𝐴)))
28 f1of 6094 . . . . . . . . . . . . . . 15 (𝐹:𝐴1-1-onto𝐴𝐹:𝐴𝐴)
29 fcoi1 6035 . . . . . . . . . . . . . . 15 (𝐹:𝐴𝐴 → (𝐹 ∘ ( I ↾ 𝐴)) = 𝐹)
3028, 29syl 17 . . . . . . . . . . . . . 14 (𝐹:𝐴1-1-onto𝐴 → (𝐹 ∘ ( I ↾ 𝐴)) = 𝐹)
3127, 30sylan9eqr 2677 . . . . . . . . . . . . 13 ((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) → (𝐹 ∘ (𝐺𝐺)) = 𝐹)
3225, 31syl5eq 2667 . . . . . . . . . . . 12 ((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) → ((𝐹𝐺) ∘ 𝐺) = 𝐹)
3332difeq1d 3705 . . . . . . . . . . 11 ((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) → (((𝐹𝐺) ∘ 𝐺) ∖ I ) = (𝐹 ∖ I ))
3433dmeqd 5286 . . . . . . . . . 10 ((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) → dom (((𝐹𝐺) ∘ 𝐺) ∖ I ) = dom (𝐹 ∖ I ))
3534adantr 481 . . . . . . . . 9 (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐺 ∖ I ) ⊆ 𝑋 ∧ dom ((𝐹𝐺) ∖ I ) ⊆ 𝑋)) → dom (((𝐹𝐺) ∘ 𝐺) ∖ I ) = dom (𝐹 ∖ I ))
36 mvdco 17786 . . . . . . . . . 10 dom (((𝐹𝐺) ∘ 𝐺) ∖ I ) ⊆ (dom ((𝐹𝐺) ∖ I ) ∪ dom (𝐺 ∖ I ))
37 simprr 795 . . . . . . . . . . 11 (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐺 ∖ I ) ⊆ 𝑋 ∧ dom ((𝐹𝐺) ∖ I ) ⊆ 𝑋)) → dom ((𝐹𝐺) ∖ I ) ⊆ 𝑋)
38 f1omvdcnv 17785 . . . . . . . . . . . . 13 (𝐺:𝐴1-1-onto𝐴 → dom (𝐺 ∖ I ) = dom (𝐺 ∖ I ))
3938ad2antlr 762 . . . . . . . . . . . 12 (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐺 ∖ I ) ⊆ 𝑋 ∧ dom ((𝐹𝐺) ∖ I ) ⊆ 𝑋)) → dom (𝐺 ∖ I ) = dom (𝐺 ∖ I ))
40 simprl 793 . . . . . . . . . . . 12 (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐺 ∖ I ) ⊆ 𝑋 ∧ dom ((𝐹𝐺) ∖ I ) ⊆ 𝑋)) → dom (𝐺 ∖ I ) ⊆ 𝑋)
4139, 40eqsstrd 3618 . . . . . . . . . . 11 (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐺 ∖ I ) ⊆ 𝑋 ∧ dom ((𝐹𝐺) ∖ I ) ⊆ 𝑋)) → dom (𝐺 ∖ I ) ⊆ 𝑋)
4237, 41unssd 3767 . . . . . . . . . 10 (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐺 ∖ I ) ⊆ 𝑋 ∧ dom ((𝐹𝐺) ∖ I ) ⊆ 𝑋)) → (dom ((𝐹𝐺) ∖ I ) ∪ dom (𝐺 ∖ I )) ⊆ 𝑋)
4336, 42syl5ss 3594 . . . . . . . . 9 (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐺 ∖ I ) ⊆ 𝑋 ∧ dom ((𝐹𝐺) ∖ I ) ⊆ 𝑋)) → dom (((𝐹𝐺) ∘ 𝐺) ∖ I ) ⊆ 𝑋)
4435, 43eqsstr3d 3619 . . . . . . . 8 (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐺 ∖ I ) ⊆ 𝑋 ∧ dom ((𝐹𝐺) ∖ I ) ⊆ 𝑋)) → dom (𝐹 ∖ I ) ⊆ 𝑋)
4544expr 642 . . . . . . 7 (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ dom (𝐺 ∖ I ) ⊆ 𝑋) → (dom ((𝐹𝐺) ∖ I ) ⊆ 𝑋 → dom (𝐹 ∖ I ) ⊆ 𝑋))
4645con3d 148 . . . . . 6 (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ dom (𝐺 ∖ I ) ⊆ 𝑋) → (¬ dom (𝐹 ∖ I ) ⊆ 𝑋 → ¬ dom ((𝐹𝐺) ∖ I ) ⊆ 𝑋))
4746expimpd 628 . . . . 5 ((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) → ((dom (𝐺 ∖ I ) ⊆ 𝑋 ∧ ¬ dom (𝐹 ∖ I ) ⊆ 𝑋) → ¬ dom ((𝐹𝐺) ∖ I ) ⊆ 𝑋))
4847ancomsd 470 . . . 4 ((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) → ((¬ dom (𝐹 ∖ I ) ⊆ 𝑋 ∧ dom (𝐺 ∖ I ) ⊆ 𝑋) → ¬ dom ((𝐹𝐺) ∖ I ) ⊆ 𝑋))
4924, 48jaod 395 . . 3 ((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) → (((dom (𝐹 ∖ I ) ⊆ 𝑋 ∧ ¬ dom (𝐺 ∖ I ) ⊆ 𝑋) ∨ (¬ dom (𝐹 ∖ I ) ⊆ 𝑋 ∧ dom (𝐺 ∖ I ) ⊆ 𝑋)) → ¬ dom ((𝐹𝐺) ∖ I ) ⊆ 𝑋))
501, 49syl5bi 232 . 2 ((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) → ((dom (𝐹 ∖ I ) ⊆ 𝑋 ⊻ dom (𝐺 ∖ I ) ⊆ 𝑋) → ¬ dom ((𝐹𝐺) ∖ I ) ⊆ 𝑋))
51503impia 1258 1 ((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴 ∧ (dom (𝐹 ∖ I ) ⊆ 𝑋 ⊻ dom (𝐺 ∖ I ) ⊆ 𝑋)) → ¬ dom ((𝐹𝐺) ∖ I ) ⊆ 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 383  wa 384  w3a 1036  wxo 1461   = wceq 1480  cdif 3552  cun 3553  wss 3555   I cid 4984  ccnv 5073  dom cdm 5074  cres 5076  ccom 5078  wf 5843  1-1-ontowf1o 5846
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-xor 1462  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-sbc 3418  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-br 4614  df-opab 4674  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855
This theorem is referenced by:  f1omvdco3  17790
  Copyright terms: Public domain W3C validator