MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  facdiv Structured version   Visualization version   GIF version

Theorem facdiv 13057
Description: A positive integer divides the factorial of an equal or larger number. (Contributed by NM, 2-May-2005.)
Assertion
Ref Expression
facdiv ((𝑀 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝑁𝑀) → ((!‘𝑀) / 𝑁) ∈ ℕ)

Proof of Theorem facdiv
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 4648 . . . . 5 (𝑗 = 0 → (𝑁𝑗𝑁 ≤ 0))
2 fveq2 6178 . . . . . . 7 (𝑗 = 0 → (!‘𝑗) = (!‘0))
32oveq1d 6650 . . . . . 6 (𝑗 = 0 → ((!‘𝑗) / 𝑁) = ((!‘0) / 𝑁))
43eleq1d 2684 . . . . 5 (𝑗 = 0 → (((!‘𝑗) / 𝑁) ∈ ℕ ↔ ((!‘0) / 𝑁) ∈ ℕ))
51, 4imbi12d 334 . . . 4 (𝑗 = 0 → ((𝑁𝑗 → ((!‘𝑗) / 𝑁) ∈ ℕ) ↔ (𝑁 ≤ 0 → ((!‘0) / 𝑁) ∈ ℕ)))
65imbi2d 330 . . 3 (𝑗 = 0 → ((𝑁 ∈ ℕ → (𝑁𝑗 → ((!‘𝑗) / 𝑁) ∈ ℕ)) ↔ (𝑁 ∈ ℕ → (𝑁 ≤ 0 → ((!‘0) / 𝑁) ∈ ℕ))))
7 breq2 4648 . . . . 5 (𝑗 = 𝑘 → (𝑁𝑗𝑁𝑘))
8 fveq2 6178 . . . . . . 7 (𝑗 = 𝑘 → (!‘𝑗) = (!‘𝑘))
98oveq1d 6650 . . . . . 6 (𝑗 = 𝑘 → ((!‘𝑗) / 𝑁) = ((!‘𝑘) / 𝑁))
109eleq1d 2684 . . . . 5 (𝑗 = 𝑘 → (((!‘𝑗) / 𝑁) ∈ ℕ ↔ ((!‘𝑘) / 𝑁) ∈ ℕ))
117, 10imbi12d 334 . . . 4 (𝑗 = 𝑘 → ((𝑁𝑗 → ((!‘𝑗) / 𝑁) ∈ ℕ) ↔ (𝑁𝑘 → ((!‘𝑘) / 𝑁) ∈ ℕ)))
1211imbi2d 330 . . 3 (𝑗 = 𝑘 → ((𝑁 ∈ ℕ → (𝑁𝑗 → ((!‘𝑗) / 𝑁) ∈ ℕ)) ↔ (𝑁 ∈ ℕ → (𝑁𝑘 → ((!‘𝑘) / 𝑁) ∈ ℕ))))
13 breq2 4648 . . . . 5 (𝑗 = (𝑘 + 1) → (𝑁𝑗𝑁 ≤ (𝑘 + 1)))
14 fveq2 6178 . . . . . . 7 (𝑗 = (𝑘 + 1) → (!‘𝑗) = (!‘(𝑘 + 1)))
1514oveq1d 6650 . . . . . 6 (𝑗 = (𝑘 + 1) → ((!‘𝑗) / 𝑁) = ((!‘(𝑘 + 1)) / 𝑁))
1615eleq1d 2684 . . . . 5 (𝑗 = (𝑘 + 1) → (((!‘𝑗) / 𝑁) ∈ ℕ ↔ ((!‘(𝑘 + 1)) / 𝑁) ∈ ℕ))
1713, 16imbi12d 334 . . . 4 (𝑗 = (𝑘 + 1) → ((𝑁𝑗 → ((!‘𝑗) / 𝑁) ∈ ℕ) ↔ (𝑁 ≤ (𝑘 + 1) → ((!‘(𝑘 + 1)) / 𝑁) ∈ ℕ)))
1817imbi2d 330 . . 3 (𝑗 = (𝑘 + 1) → ((𝑁 ∈ ℕ → (𝑁𝑗 → ((!‘𝑗) / 𝑁) ∈ ℕ)) ↔ (𝑁 ∈ ℕ → (𝑁 ≤ (𝑘 + 1) → ((!‘(𝑘 + 1)) / 𝑁) ∈ ℕ))))
19 breq2 4648 . . . . 5 (𝑗 = 𝑀 → (𝑁𝑗𝑁𝑀))
20 fveq2 6178 . . . . . . 7 (𝑗 = 𝑀 → (!‘𝑗) = (!‘𝑀))
2120oveq1d 6650 . . . . . 6 (𝑗 = 𝑀 → ((!‘𝑗) / 𝑁) = ((!‘𝑀) / 𝑁))
2221eleq1d 2684 . . . . 5 (𝑗 = 𝑀 → (((!‘𝑗) / 𝑁) ∈ ℕ ↔ ((!‘𝑀) / 𝑁) ∈ ℕ))
2319, 22imbi12d 334 . . . 4 (𝑗 = 𝑀 → ((𝑁𝑗 → ((!‘𝑗) / 𝑁) ∈ ℕ) ↔ (𝑁𝑀 → ((!‘𝑀) / 𝑁) ∈ ℕ)))
2423imbi2d 330 . . 3 (𝑗 = 𝑀 → ((𝑁 ∈ ℕ → (𝑁𝑗 → ((!‘𝑗) / 𝑁) ∈ ℕ)) ↔ (𝑁 ∈ ℕ → (𝑁𝑀 → ((!‘𝑀) / 𝑁) ∈ ℕ))))
25 nngt0 11034 . . . . 5 (𝑁 ∈ ℕ → 0 < 𝑁)
26 0re 10025 . . . . . 6 0 ∈ ℝ
27 nnre 11012 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
28 ltnle 10102 . . . . . 6 ((0 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (0 < 𝑁 ↔ ¬ 𝑁 ≤ 0))
2926, 27, 28sylancr 694 . . . . 5 (𝑁 ∈ ℕ → (0 < 𝑁 ↔ ¬ 𝑁 ≤ 0))
3025, 29mpbid 222 . . . 4 (𝑁 ∈ ℕ → ¬ 𝑁 ≤ 0)
3130pm2.21d 118 . . 3 (𝑁 ∈ ℕ → (𝑁 ≤ 0 → ((!‘0) / 𝑁) ∈ ℕ))
32 peano2nn0 11318 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ0)
3332nn0red 11337 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℝ)
34 leloe 10109 . . . . . . . . . . . 12 ((𝑁 ∈ ℝ ∧ (𝑘 + 1) ∈ ℝ) → (𝑁 ≤ (𝑘 + 1) ↔ (𝑁 < (𝑘 + 1) ∨ 𝑁 = (𝑘 + 1))))
3527, 33, 34syl2an 494 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑁 ≤ (𝑘 + 1) ↔ (𝑁 < (𝑘 + 1) ∨ 𝑁 = (𝑘 + 1))))
36 nnnn0 11284 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
37 nn0leltp1 11421 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑁𝑘𝑁 < (𝑘 + 1)))
3836, 37sylan 488 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑁𝑘𝑁 < (𝑘 + 1)))
39 nn0p1nn 11317 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ)
40 nnmulcl 11028 . . . . . . . . . . . . . . . . . . 19 ((((!‘𝑘) / 𝑁) ∈ ℕ ∧ (𝑘 + 1) ∈ ℕ) → (((!‘𝑘) / 𝑁) · (𝑘 + 1)) ∈ ℕ)
4139, 40sylan2 491 . . . . . . . . . . . . . . . . . 18 ((((!‘𝑘) / 𝑁) ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (((!‘𝑘) / 𝑁) · (𝑘 + 1)) ∈ ℕ)
4241expcom 451 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ0 → (((!‘𝑘) / 𝑁) ∈ ℕ → (((!‘𝑘) / 𝑁) · (𝑘 + 1)) ∈ ℕ))
4342adantl 482 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (((!‘𝑘) / 𝑁) ∈ ℕ → (((!‘𝑘) / 𝑁) · (𝑘 + 1)) ∈ ℕ))
44 faccl 13053 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℕ)
4544nncnd 11021 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℂ)
4645adantl 482 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (!‘𝑘) ∈ ℂ)
4732nn0cnd 11338 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℂ)
4847adantl 482 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑘 + 1) ∈ ℂ)
49 nncn 11013 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
50 nnne0 11038 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
5149, 50jca 554 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ → (𝑁 ∈ ℂ ∧ 𝑁 ≠ 0))
5251adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑁 ∈ ℂ ∧ 𝑁 ≠ 0))
53 div23 10689 . . . . . . . . . . . . . . . . . 18 (((!‘𝑘) ∈ ℂ ∧ (𝑘 + 1) ∈ ℂ ∧ (𝑁 ∈ ℂ ∧ 𝑁 ≠ 0)) → (((!‘𝑘) · (𝑘 + 1)) / 𝑁) = (((!‘𝑘) / 𝑁) · (𝑘 + 1)))
5446, 48, 52, 53syl3anc 1324 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (((!‘𝑘) · (𝑘 + 1)) / 𝑁) = (((!‘𝑘) / 𝑁) · (𝑘 + 1)))
5554eleq1d 2684 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → ((((!‘𝑘) · (𝑘 + 1)) / 𝑁) ∈ ℕ ↔ (((!‘𝑘) / 𝑁) · (𝑘 + 1)) ∈ ℕ))
5643, 55sylibrd 249 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (((!‘𝑘) / 𝑁) ∈ ℕ → (((!‘𝑘) · (𝑘 + 1)) / 𝑁) ∈ ℕ))
5756imim2d 57 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → ((𝑁𝑘 → ((!‘𝑘) / 𝑁) ∈ ℕ) → (𝑁𝑘 → (((!‘𝑘) · (𝑘 + 1)) / 𝑁) ∈ ℕ)))
5857com23 86 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑁𝑘 → ((𝑁𝑘 → ((!‘𝑘) / 𝑁) ∈ ℕ) → (((!‘𝑘) · (𝑘 + 1)) / 𝑁) ∈ ℕ)))
5938, 58sylbird 250 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑁 < (𝑘 + 1) → ((𝑁𝑘 → ((!‘𝑘) / 𝑁) ∈ ℕ) → (((!‘𝑘) · (𝑘 + 1)) / 𝑁) ∈ ℕ)))
6049adantr 481 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → 𝑁 ∈ ℂ)
6150adantr 481 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → 𝑁 ≠ 0)
6246, 60, 61divcan4d 10792 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (((!‘𝑘) · 𝑁) / 𝑁) = (!‘𝑘))
6344adantl 482 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (!‘𝑘) ∈ ℕ)
6462, 63eqeltrd 2699 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (((!‘𝑘) · 𝑁) / 𝑁) ∈ ℕ)
65 oveq2 6643 . . . . . . . . . . . . . . . 16 (𝑁 = (𝑘 + 1) → ((!‘𝑘) · 𝑁) = ((!‘𝑘) · (𝑘 + 1)))
6665oveq1d 6650 . . . . . . . . . . . . . . 15 (𝑁 = (𝑘 + 1) → (((!‘𝑘) · 𝑁) / 𝑁) = (((!‘𝑘) · (𝑘 + 1)) / 𝑁))
6766eleq1d 2684 . . . . . . . . . . . . . 14 (𝑁 = (𝑘 + 1) → ((((!‘𝑘) · 𝑁) / 𝑁) ∈ ℕ ↔ (((!‘𝑘) · (𝑘 + 1)) / 𝑁) ∈ ℕ))
6864, 67syl5ibcom 235 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑁 = (𝑘 + 1) → (((!‘𝑘) · (𝑘 + 1)) / 𝑁) ∈ ℕ))
6968a1dd 50 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑁 = (𝑘 + 1) → ((𝑁𝑘 → ((!‘𝑘) / 𝑁) ∈ ℕ) → (((!‘𝑘) · (𝑘 + 1)) / 𝑁) ∈ ℕ)))
7059, 69jaod 395 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → ((𝑁 < (𝑘 + 1) ∨ 𝑁 = (𝑘 + 1)) → ((𝑁𝑘 → ((!‘𝑘) / 𝑁) ∈ ℕ) → (((!‘𝑘) · (𝑘 + 1)) / 𝑁) ∈ ℕ)))
7135, 70sylbid 230 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑁 ≤ (𝑘 + 1) → ((𝑁𝑘 → ((!‘𝑘) / 𝑁) ∈ ℕ) → (((!‘𝑘) · (𝑘 + 1)) / 𝑁) ∈ ℕ)))
7271ex 450 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑘 ∈ ℕ0 → (𝑁 ≤ (𝑘 + 1) → ((𝑁𝑘 → ((!‘𝑘) / 𝑁) ∈ ℕ) → (((!‘𝑘) · (𝑘 + 1)) / 𝑁) ∈ ℕ))))
7372com34 91 . . . . . . . 8 (𝑁 ∈ ℕ → (𝑘 ∈ ℕ0 → ((𝑁𝑘 → ((!‘𝑘) / 𝑁) ∈ ℕ) → (𝑁 ≤ (𝑘 + 1) → (((!‘𝑘) · (𝑘 + 1)) / 𝑁) ∈ ℕ))))
7473com12 32 . . . . . . 7 (𝑘 ∈ ℕ0 → (𝑁 ∈ ℕ → ((𝑁𝑘 → ((!‘𝑘) / 𝑁) ∈ ℕ) → (𝑁 ≤ (𝑘 + 1) → (((!‘𝑘) · (𝑘 + 1)) / 𝑁) ∈ ℕ))))
7574imp4d 617 . . . . . 6 (𝑘 ∈ ℕ0 → ((𝑁 ∈ ℕ ∧ ((𝑁𝑘 → ((!‘𝑘) / 𝑁) ∈ ℕ) ∧ 𝑁 ≤ (𝑘 + 1))) → (((!‘𝑘) · (𝑘 + 1)) / 𝑁) ∈ ℕ))
76 facp1 13048 . . . . . . . 8 (𝑘 ∈ ℕ0 → (!‘(𝑘 + 1)) = ((!‘𝑘) · (𝑘 + 1)))
7776oveq1d 6650 . . . . . . 7 (𝑘 ∈ ℕ0 → ((!‘(𝑘 + 1)) / 𝑁) = (((!‘𝑘) · (𝑘 + 1)) / 𝑁))
7877eleq1d 2684 . . . . . 6 (𝑘 ∈ ℕ0 → (((!‘(𝑘 + 1)) / 𝑁) ∈ ℕ ↔ (((!‘𝑘) · (𝑘 + 1)) / 𝑁) ∈ ℕ))
7975, 78sylibrd 249 . . . . 5 (𝑘 ∈ ℕ0 → ((𝑁 ∈ ℕ ∧ ((𝑁𝑘 → ((!‘𝑘) / 𝑁) ∈ ℕ) ∧ 𝑁 ≤ (𝑘 + 1))) → ((!‘(𝑘 + 1)) / 𝑁) ∈ ℕ))
8079exp4d 636 . . . 4 (𝑘 ∈ ℕ0 → (𝑁 ∈ ℕ → ((𝑁𝑘 → ((!‘𝑘) / 𝑁) ∈ ℕ) → (𝑁 ≤ (𝑘 + 1) → ((!‘(𝑘 + 1)) / 𝑁) ∈ ℕ))))
8180a2d 29 . . 3 (𝑘 ∈ ℕ0 → ((𝑁 ∈ ℕ → (𝑁𝑘 → ((!‘𝑘) / 𝑁) ∈ ℕ)) → (𝑁 ∈ ℕ → (𝑁 ≤ (𝑘 + 1) → ((!‘(𝑘 + 1)) / 𝑁) ∈ ℕ))))
826, 12, 18, 24, 31, 81nn0ind 11457 . 2 (𝑀 ∈ ℕ0 → (𝑁 ∈ ℕ → (𝑁𝑀 → ((!‘𝑀) / 𝑁) ∈ ℕ)))
83823imp 1254 1 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝑁𝑀) → ((!‘𝑀) / 𝑁) ∈ ℕ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  w3a 1036   = wceq 1481  wcel 1988  wne 2791   class class class wbr 4644  cfv 5876  (class class class)co 6635  cc 9919  cr 9920  0cc0 9921  1c1 9922   + caddc 9924   · cmul 9926   < clt 10059  cle 10060   / cdiv 10669  cn 11005  0cn0 11277  !cfa 13043
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-om 7051  df-2nd 7154  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-er 7727  df-en 7941  df-dom 7942  df-sdom 7943  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-div 10670  df-nn 11006  df-n0 11278  df-z 11363  df-uz 11673  df-seq 12785  df-fac 13044
This theorem is referenced by:  facndiv  13058  eirrlem  14913
  Copyright terms: Public domain W3C validator