MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  faclbnd Structured version   Visualization version   GIF version

Theorem faclbnd 13025
Description: A lower bound for the factorial function. (Contributed by NM, 17-Dec-2005.)
Assertion
Ref Expression
faclbnd ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀↑(𝑁 + 1)) ≤ ((𝑀𝑀) · (!‘𝑁)))

Proof of Theorem faclbnd
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnn0 11246 . 2 (𝑀 ∈ ℕ0 ↔ (𝑀 ∈ ℕ ∨ 𝑀 = 0))
2 oveq1 6617 . . . . . . . 8 (𝑗 = 0 → (𝑗 + 1) = (0 + 1))
32oveq2d 6626 . . . . . . 7 (𝑗 = 0 → (𝑀↑(𝑗 + 1)) = (𝑀↑(0 + 1)))
4 fveq2 6153 . . . . . . . 8 (𝑗 = 0 → (!‘𝑗) = (!‘0))
54oveq2d 6626 . . . . . . 7 (𝑗 = 0 → ((𝑀𝑀) · (!‘𝑗)) = ((𝑀𝑀) · (!‘0)))
63, 5breq12d 4631 . . . . . 6 (𝑗 = 0 → ((𝑀↑(𝑗 + 1)) ≤ ((𝑀𝑀) · (!‘𝑗)) ↔ (𝑀↑(0 + 1)) ≤ ((𝑀𝑀) · (!‘0))))
76imbi2d 330 . . . . 5 (𝑗 = 0 → ((𝑀 ∈ ℕ → (𝑀↑(𝑗 + 1)) ≤ ((𝑀𝑀) · (!‘𝑗))) ↔ (𝑀 ∈ ℕ → (𝑀↑(0 + 1)) ≤ ((𝑀𝑀) · (!‘0)))))
8 oveq1 6617 . . . . . . . 8 (𝑗 = 𝑘 → (𝑗 + 1) = (𝑘 + 1))
98oveq2d 6626 . . . . . . 7 (𝑗 = 𝑘 → (𝑀↑(𝑗 + 1)) = (𝑀↑(𝑘 + 1)))
10 fveq2 6153 . . . . . . . 8 (𝑗 = 𝑘 → (!‘𝑗) = (!‘𝑘))
1110oveq2d 6626 . . . . . . 7 (𝑗 = 𝑘 → ((𝑀𝑀) · (!‘𝑗)) = ((𝑀𝑀) · (!‘𝑘)))
129, 11breq12d 4631 . . . . . 6 (𝑗 = 𝑘 → ((𝑀↑(𝑗 + 1)) ≤ ((𝑀𝑀) · (!‘𝑗)) ↔ (𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘))))
1312imbi2d 330 . . . . 5 (𝑗 = 𝑘 → ((𝑀 ∈ ℕ → (𝑀↑(𝑗 + 1)) ≤ ((𝑀𝑀) · (!‘𝑗))) ↔ (𝑀 ∈ ℕ → (𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘)))))
14 oveq1 6617 . . . . . . . 8 (𝑗 = (𝑘 + 1) → (𝑗 + 1) = ((𝑘 + 1) + 1))
1514oveq2d 6626 . . . . . . 7 (𝑗 = (𝑘 + 1) → (𝑀↑(𝑗 + 1)) = (𝑀↑((𝑘 + 1) + 1)))
16 fveq2 6153 . . . . . . . 8 (𝑗 = (𝑘 + 1) → (!‘𝑗) = (!‘(𝑘 + 1)))
1716oveq2d 6626 . . . . . . 7 (𝑗 = (𝑘 + 1) → ((𝑀𝑀) · (!‘𝑗)) = ((𝑀𝑀) · (!‘(𝑘 + 1))))
1815, 17breq12d 4631 . . . . . 6 (𝑗 = (𝑘 + 1) → ((𝑀↑(𝑗 + 1)) ≤ ((𝑀𝑀) · (!‘𝑗)) ↔ (𝑀↑((𝑘 + 1) + 1)) ≤ ((𝑀𝑀) · (!‘(𝑘 + 1)))))
1918imbi2d 330 . . . . 5 (𝑗 = (𝑘 + 1) → ((𝑀 ∈ ℕ → (𝑀↑(𝑗 + 1)) ≤ ((𝑀𝑀) · (!‘𝑗))) ↔ (𝑀 ∈ ℕ → (𝑀↑((𝑘 + 1) + 1)) ≤ ((𝑀𝑀) · (!‘(𝑘 + 1))))))
20 oveq1 6617 . . . . . . . 8 (𝑗 = 𝑁 → (𝑗 + 1) = (𝑁 + 1))
2120oveq2d 6626 . . . . . . 7 (𝑗 = 𝑁 → (𝑀↑(𝑗 + 1)) = (𝑀↑(𝑁 + 1)))
22 fveq2 6153 . . . . . . . 8 (𝑗 = 𝑁 → (!‘𝑗) = (!‘𝑁))
2322oveq2d 6626 . . . . . . 7 (𝑗 = 𝑁 → ((𝑀𝑀) · (!‘𝑗)) = ((𝑀𝑀) · (!‘𝑁)))
2421, 23breq12d 4631 . . . . . 6 (𝑗 = 𝑁 → ((𝑀↑(𝑗 + 1)) ≤ ((𝑀𝑀) · (!‘𝑗)) ↔ (𝑀↑(𝑁 + 1)) ≤ ((𝑀𝑀) · (!‘𝑁))))
2524imbi2d 330 . . . . 5 (𝑗 = 𝑁 → ((𝑀 ∈ ℕ → (𝑀↑(𝑗 + 1)) ≤ ((𝑀𝑀) · (!‘𝑗))) ↔ (𝑀 ∈ ℕ → (𝑀↑(𝑁 + 1)) ≤ ((𝑀𝑀) · (!‘𝑁)))))
26 nnre 10979 . . . . . . 7 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ)
27 nnge1 10998 . . . . . . 7 (𝑀 ∈ ℕ → 1 ≤ 𝑀)
28 elnnuz 11676 . . . . . . . 8 (𝑀 ∈ ℕ ↔ 𝑀 ∈ (ℤ‘1))
2928biimpi 206 . . . . . . 7 (𝑀 ∈ ℕ → 𝑀 ∈ (ℤ‘1))
3026, 27, 29leexp2ad 12989 . . . . . 6 (𝑀 ∈ ℕ → (𝑀↑1) ≤ (𝑀𝑀))
31 0p1e1 11084 . . . . . . . 8 (0 + 1) = 1
3231oveq2i 6621 . . . . . . 7 (𝑀↑(0 + 1)) = (𝑀↑1)
3332a1i 11 . . . . . 6 (𝑀 ∈ ℕ → (𝑀↑(0 + 1)) = (𝑀↑1))
34 fac0 13011 . . . . . . . 8 (!‘0) = 1
3534oveq2i 6621 . . . . . . 7 ((𝑀𝑀) · (!‘0)) = ((𝑀𝑀) · 1)
36 nnnn0 11251 . . . . . . . . . 10 (𝑀 ∈ ℕ → 𝑀 ∈ ℕ0)
3726, 36reexpcld 12973 . . . . . . . . 9 (𝑀 ∈ ℕ → (𝑀𝑀) ∈ ℝ)
3837recnd 10020 . . . . . . . 8 (𝑀 ∈ ℕ → (𝑀𝑀) ∈ ℂ)
3938mulid1d 10009 . . . . . . 7 (𝑀 ∈ ℕ → ((𝑀𝑀) · 1) = (𝑀𝑀))
4035, 39syl5eq 2667 . . . . . 6 (𝑀 ∈ ℕ → ((𝑀𝑀) · (!‘0)) = (𝑀𝑀))
4130, 33, 403brtr4d 4650 . . . . 5 (𝑀 ∈ ℕ → (𝑀↑(0 + 1)) ≤ ((𝑀𝑀) · (!‘0)))
4226ad3antrrr 765 . . . . . . . . . . . . . 14 ((((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ (𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘))) ∧ ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑀 ≤ (𝑘 + 1))) → 𝑀 ∈ ℝ)
43 simpllr 798 . . . . . . . . . . . . . . 15 ((((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ (𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘))) ∧ ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑀 ≤ (𝑘 + 1))) → 𝑘 ∈ ℕ0)
44 peano2nn0 11285 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ0)
4543, 44syl 17 . . . . . . . . . . . . . 14 ((((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ (𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘))) ∧ ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑀 ≤ (𝑘 + 1))) → (𝑘 + 1) ∈ ℕ0)
4642, 45reexpcld 12973 . . . . . . . . . . . . 13 ((((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ (𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘))) ∧ ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑀 ≤ (𝑘 + 1))) → (𝑀↑(𝑘 + 1)) ∈ ℝ)
4736ad3antrrr 765 . . . . . . . . . . . . . . 15 ((((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ (𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘))) ∧ ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑀 ≤ (𝑘 + 1))) → 𝑀 ∈ ℕ0)
4842, 47reexpcld 12973 . . . . . . . . . . . . . 14 ((((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ (𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘))) ∧ ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑀 ≤ (𝑘 + 1))) → (𝑀𝑀) ∈ ℝ)
4943faccld 13019 . . . . . . . . . . . . . . 15 ((((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ (𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘))) ∧ ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑀 ≤ (𝑘 + 1))) → (!‘𝑘) ∈ ℕ)
5049nnred 10987 . . . . . . . . . . . . . 14 ((((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ (𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘))) ∧ ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑀 ≤ (𝑘 + 1))) → (!‘𝑘) ∈ ℝ)
5148, 50remulcld 10022 . . . . . . . . . . . . 13 ((((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ (𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘))) ∧ ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑀 ≤ (𝑘 + 1))) → ((𝑀𝑀) · (!‘𝑘)) ∈ ℝ)
52 nn0re 11253 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ0𝑘 ∈ ℝ)
53 peano2re 10161 . . . . . . . . . . . . . 14 (𝑘 ∈ ℝ → (𝑘 + 1) ∈ ℝ)
5443, 52, 533syl 18 . . . . . . . . . . . . 13 ((((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ (𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘))) ∧ ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑀 ≤ (𝑘 + 1))) → (𝑘 + 1) ∈ ℝ)
55 nngt0 11001 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℕ → 0 < 𝑀)
5655ad3antrrr 765 . . . . . . . . . . . . . . 15 ((((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ (𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘))) ∧ ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑀 ≤ (𝑘 + 1))) → 0 < 𝑀)
57 0re 9992 . . . . . . . . . . . . . . . 16 0 ∈ ℝ
58 ltle 10078 . . . . . . . . . . . . . . . 16 ((0 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (0 < 𝑀 → 0 ≤ 𝑀))
5957, 58mpan 705 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℝ → (0 < 𝑀 → 0 ≤ 𝑀))
6042, 56, 59sylc 65 . . . . . . . . . . . . . 14 ((((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ (𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘))) ∧ ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑀 ≤ (𝑘 + 1))) → 0 ≤ 𝑀)
6142, 45, 60expge0d 12974 . . . . . . . . . . . . 13 ((((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ (𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘))) ∧ ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑀 ≤ (𝑘 + 1))) → 0 ≤ (𝑀↑(𝑘 + 1)))
62 simplr 791 . . . . . . . . . . . . 13 ((((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ (𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘))) ∧ ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑀 ≤ (𝑘 + 1))) → (𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘)))
63 simprr 795 . . . . . . . . . . . . 13 ((((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ (𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘))) ∧ ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑀 ≤ (𝑘 + 1))) → 𝑀 ≤ (𝑘 + 1))
6446, 51, 42, 54, 61, 60, 62, 63lemul12ad 10918 . . . . . . . . . . . 12 ((((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ (𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘))) ∧ ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑀 ≤ (𝑘 + 1))) → ((𝑀↑(𝑘 + 1)) · 𝑀) ≤ (((𝑀𝑀) · (!‘𝑘)) · (𝑘 + 1)))
6564anandis 872 . . . . . . . . . . 11 (((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ ((𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘)) ∧ 𝑀 ≤ (𝑘 + 1))) → ((𝑀↑(𝑘 + 1)) · 𝑀) ≤ (((𝑀𝑀) · (!‘𝑘)) · (𝑘 + 1)))
66 nncn 10980 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ → 𝑀 ∈ ℂ)
67 expp1 12815 . . . . . . . . . . . . 13 ((𝑀 ∈ ℂ ∧ (𝑘 + 1) ∈ ℕ0) → (𝑀↑((𝑘 + 1) + 1)) = ((𝑀↑(𝑘 + 1)) · 𝑀))
6866, 44, 67syl2an 494 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑀↑((𝑘 + 1) + 1)) = ((𝑀↑(𝑘 + 1)) · 𝑀))
6968adantr 481 . . . . . . . . . . 11 (((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ ((𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘)) ∧ 𝑀 ≤ (𝑘 + 1))) → (𝑀↑((𝑘 + 1) + 1)) = ((𝑀↑(𝑘 + 1)) · 𝑀))
70 facp1 13013 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ0 → (!‘(𝑘 + 1)) = ((!‘𝑘) · (𝑘 + 1)))
7170adantl 482 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (!‘(𝑘 + 1)) = ((!‘𝑘) · (𝑘 + 1)))
7271oveq2d 6626 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → ((𝑀𝑀) · (!‘(𝑘 + 1))) = ((𝑀𝑀) · ((!‘𝑘) · (𝑘 + 1))))
7338adantr 481 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑀𝑀) ∈ ℂ)
74 faccl 13018 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℕ)
7574nncnd 10988 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℂ)
7675adantl 482 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (!‘𝑘) ∈ ℂ)
77 nn0cn 11254 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
78 peano2cn 10160 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℂ → (𝑘 + 1) ∈ ℂ)
7977, 78syl 17 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℂ)
8079adantl 482 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑘 + 1) ∈ ℂ)
8173, 76, 80mulassd 10015 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (((𝑀𝑀) · (!‘𝑘)) · (𝑘 + 1)) = ((𝑀𝑀) · ((!‘𝑘) · (𝑘 + 1))))
8272, 81eqtr4d 2658 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → ((𝑀𝑀) · (!‘(𝑘 + 1))) = (((𝑀𝑀) · (!‘𝑘)) · (𝑘 + 1)))
8382adantr 481 . . . . . . . . . . 11 (((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ ((𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘)) ∧ 𝑀 ≤ (𝑘 + 1))) → ((𝑀𝑀) · (!‘(𝑘 + 1))) = (((𝑀𝑀) · (!‘𝑘)) · (𝑘 + 1)))
8465, 69, 833brtr4d 4650 . . . . . . . . . 10 (((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ ((𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘)) ∧ 𝑀 ≤ (𝑘 + 1))) → (𝑀↑((𝑘 + 1) + 1)) ≤ ((𝑀𝑀) · (!‘(𝑘 + 1))))
8584exp32 630 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → ((𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘)) → (𝑀 ≤ (𝑘 + 1) → (𝑀↑((𝑘 + 1) + 1)) ≤ ((𝑀𝑀) · (!‘(𝑘 + 1))))))
8685com23 86 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑀 ≤ (𝑘 + 1) → ((𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘)) → (𝑀↑((𝑘 + 1) + 1)) ≤ ((𝑀𝑀) · (!‘(𝑘 + 1))))))
87 nn0ltp1le 11387 . . . . . . . . . . 11 (((𝑘 + 1) ∈ ℕ0𝑀 ∈ ℕ0) → ((𝑘 + 1) < 𝑀 ↔ ((𝑘 + 1) + 1) ≤ 𝑀))
8844, 36, 87syl2anr 495 . . . . . . . . . 10 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → ((𝑘 + 1) < 𝑀 ↔ ((𝑘 + 1) + 1) ≤ 𝑀))
89 peano2nn0 11285 . . . . . . . . . . . . . . 15 ((𝑘 + 1) ∈ ℕ0 → ((𝑘 + 1) + 1) ∈ ℕ0)
9044, 89syl 17 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ0 → ((𝑘 + 1) + 1) ∈ ℕ0)
91 reexpcl 12825 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℝ ∧ ((𝑘 + 1) + 1) ∈ ℕ0) → (𝑀↑((𝑘 + 1) + 1)) ∈ ℝ)
9226, 90, 91syl2an 494 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑀↑((𝑘 + 1) + 1)) ∈ ℝ)
9392adantr 481 . . . . . . . . . . . 12 (((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ ((𝑘 + 1) + 1) ≤ 𝑀) → (𝑀↑((𝑘 + 1) + 1)) ∈ ℝ)
9437ad2antrr 761 . . . . . . . . . . . 12 (((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ ((𝑘 + 1) + 1) ≤ 𝑀) → (𝑀𝑀) ∈ ℝ)
9544faccld 13019 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ0 → (!‘(𝑘 + 1)) ∈ ℕ)
9695nnred 10987 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ0 → (!‘(𝑘 + 1)) ∈ ℝ)
97 remulcl 9973 . . . . . . . . . . . . . 14 (((𝑀𝑀) ∈ ℝ ∧ (!‘(𝑘 + 1)) ∈ ℝ) → ((𝑀𝑀) · (!‘(𝑘 + 1))) ∈ ℝ)
9837, 96, 97syl2an 494 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → ((𝑀𝑀) · (!‘(𝑘 + 1))) ∈ ℝ)
9998adantr 481 . . . . . . . . . . . 12 (((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ ((𝑘 + 1) + 1) ≤ 𝑀) → ((𝑀𝑀) · (!‘(𝑘 + 1))) ∈ ℝ)
10026ad2antrr 761 . . . . . . . . . . . . 13 (((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ ((𝑘 + 1) + 1) ≤ 𝑀) → 𝑀 ∈ ℝ)
10127ad2antrr 761 . . . . . . . . . . . . 13 (((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ ((𝑘 + 1) + 1) ≤ 𝑀) → 1 ≤ 𝑀)
102 simpr 477 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ ((𝑘 + 1) + 1) ≤ 𝑀) → ((𝑘 + 1) + 1) ≤ 𝑀)
10390ad2antlr 762 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ ((𝑘 + 1) + 1) ≤ 𝑀) → ((𝑘 + 1) + 1) ∈ ℕ0)
104103nn0zd 11432 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ ((𝑘 + 1) + 1) ≤ 𝑀) → ((𝑘 + 1) + 1) ∈ ℤ)
105 nnz 11351 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℕ → 𝑀 ∈ ℤ)
106105ad2antrr 761 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ ((𝑘 + 1) + 1) ≤ 𝑀) → 𝑀 ∈ ℤ)
107 eluz 11653 . . . . . . . . . . . . . . 15 ((((𝑘 + 1) + 1) ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀 ∈ (ℤ‘((𝑘 + 1) + 1)) ↔ ((𝑘 + 1) + 1) ≤ 𝑀))
108104, 106, 107syl2anc 692 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ ((𝑘 + 1) + 1) ≤ 𝑀) → (𝑀 ∈ (ℤ‘((𝑘 + 1) + 1)) ↔ ((𝑘 + 1) + 1) ≤ 𝑀))
109102, 108mpbird 247 . . . . . . . . . . . . 13 (((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ ((𝑘 + 1) + 1) ≤ 𝑀) → 𝑀 ∈ (ℤ‘((𝑘 + 1) + 1)))
110100, 101, 109leexp2ad 12989 . . . . . . . . . . . 12 (((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ ((𝑘 + 1) + 1) ≤ 𝑀) → (𝑀↑((𝑘 + 1) + 1)) ≤ (𝑀𝑀))
11137, 96anim12i 589 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → ((𝑀𝑀) ∈ ℝ ∧ (!‘(𝑘 + 1)) ∈ ℝ))
112 nn0re 11253 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ ℕ0𝑀 ∈ ℝ)
113 id 22 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ ℕ0𝑀 ∈ ℕ0)
114 nn0ge0 11270 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ ℕ0 → 0 ≤ 𝑀)
115112, 113, 114expge0d 12974 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℕ0 → 0 ≤ (𝑀𝑀))
11636, 115syl 17 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℕ → 0 ≤ (𝑀𝑀))
11795nnge1d 11015 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ0 → 1 ≤ (!‘(𝑘 + 1)))
118116, 117anim12i 589 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (0 ≤ (𝑀𝑀) ∧ 1 ≤ (!‘(𝑘 + 1))))
119 lemulge11 10837 . . . . . . . . . . . . . 14 ((((𝑀𝑀) ∈ ℝ ∧ (!‘(𝑘 + 1)) ∈ ℝ) ∧ (0 ≤ (𝑀𝑀) ∧ 1 ≤ (!‘(𝑘 + 1)))) → (𝑀𝑀) ≤ ((𝑀𝑀) · (!‘(𝑘 + 1))))
120111, 118, 119syl2anc 692 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑀𝑀) ≤ ((𝑀𝑀) · (!‘(𝑘 + 1))))
121120adantr 481 . . . . . . . . . . . 12 (((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ ((𝑘 + 1) + 1) ≤ 𝑀) → (𝑀𝑀) ≤ ((𝑀𝑀) · (!‘(𝑘 + 1))))
12293, 94, 99, 110, 121letrd 10146 . . . . . . . . . . 11 (((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ ((𝑘 + 1) + 1) ≤ 𝑀) → (𝑀↑((𝑘 + 1) + 1)) ≤ ((𝑀𝑀) · (!‘(𝑘 + 1))))
123122ex 450 . . . . . . . . . 10 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (((𝑘 + 1) + 1) ≤ 𝑀 → (𝑀↑((𝑘 + 1) + 1)) ≤ ((𝑀𝑀) · (!‘(𝑘 + 1)))))
12488, 123sylbid 230 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → ((𝑘 + 1) < 𝑀 → (𝑀↑((𝑘 + 1) + 1)) ≤ ((𝑀𝑀) · (!‘(𝑘 + 1)))))
125124a1dd 50 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → ((𝑘 + 1) < 𝑀 → ((𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘)) → (𝑀↑((𝑘 + 1) + 1)) ≤ ((𝑀𝑀) · (!‘(𝑘 + 1))))))
12652, 53syl 17 . . . . . . . . 9 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℝ)
127 lelttric 10096 . . . . . . . . 9 ((𝑀 ∈ ℝ ∧ (𝑘 + 1) ∈ ℝ) → (𝑀 ≤ (𝑘 + 1) ∨ (𝑘 + 1) < 𝑀))
12826, 126, 127syl2an 494 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑀 ≤ (𝑘 + 1) ∨ (𝑘 + 1) < 𝑀))
12986, 125, 128mpjaod 396 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → ((𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘)) → (𝑀↑((𝑘 + 1) + 1)) ≤ ((𝑀𝑀) · (!‘(𝑘 + 1)))))
130129expcom 451 . . . . . 6 (𝑘 ∈ ℕ0 → (𝑀 ∈ ℕ → ((𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘)) → (𝑀↑((𝑘 + 1) + 1)) ≤ ((𝑀𝑀) · (!‘(𝑘 + 1))))))
131130a2d 29 . . . . 5 (𝑘 ∈ ℕ0 → ((𝑀 ∈ ℕ → (𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘))) → (𝑀 ∈ ℕ → (𝑀↑((𝑘 + 1) + 1)) ≤ ((𝑀𝑀) · (!‘(𝑘 + 1))))))
1327, 13, 19, 25, 41, 131nn0ind 11424 . . . 4 (𝑁 ∈ ℕ0 → (𝑀 ∈ ℕ → (𝑀↑(𝑁 + 1)) ≤ ((𝑀𝑀) · (!‘𝑁))))
133132impcom 446 . . 3 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝑀↑(𝑁 + 1)) ≤ ((𝑀𝑀) · (!‘𝑁)))
134 faccl 13018 . . . . . . . 8 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ)
135134nnnn0d 11303 . . . . . . 7 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ0)
136135nn0ge0d 11306 . . . . . 6 (𝑁 ∈ ℕ0 → 0 ≤ (!‘𝑁))
137 nn0p1nn 11284 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ)
1381370expd 12972 . . . . . 6 (𝑁 ∈ ℕ0 → (0↑(𝑁 + 1)) = 0)
139 0exp0e1 12813 . . . . . . . 8 (0↑0) = 1
140139oveq1i 6620 . . . . . . 7 ((0↑0) · (!‘𝑁)) = (1 · (!‘𝑁))
141134nncnd 10988 . . . . . . . 8 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℂ)
142141mulid2d 10010 . . . . . . 7 (𝑁 ∈ ℕ0 → (1 · (!‘𝑁)) = (!‘𝑁))
143140, 142syl5eq 2667 . . . . . 6 (𝑁 ∈ ℕ0 → ((0↑0) · (!‘𝑁)) = (!‘𝑁))
144136, 138, 1433brtr4d 4650 . . . . 5 (𝑁 ∈ ℕ0 → (0↑(𝑁 + 1)) ≤ ((0↑0) · (!‘𝑁)))
145 oveq1 6617 . . . . . 6 (𝑀 = 0 → (𝑀↑(𝑁 + 1)) = (0↑(𝑁 + 1)))
146 oveq12 6619 . . . . . . . 8 ((𝑀 = 0 ∧ 𝑀 = 0) → (𝑀𝑀) = (0↑0))
147146anidms 676 . . . . . . 7 (𝑀 = 0 → (𝑀𝑀) = (0↑0))
148147oveq1d 6625 . . . . . 6 (𝑀 = 0 → ((𝑀𝑀) · (!‘𝑁)) = ((0↑0) · (!‘𝑁)))
149145, 148breq12d 4631 . . . . 5 (𝑀 = 0 → ((𝑀↑(𝑁 + 1)) ≤ ((𝑀𝑀) · (!‘𝑁)) ↔ (0↑(𝑁 + 1)) ≤ ((0↑0) · (!‘𝑁))))
150144, 149syl5ibr 236 . . . 4 (𝑀 = 0 → (𝑁 ∈ ℕ0 → (𝑀↑(𝑁 + 1)) ≤ ((𝑀𝑀) · (!‘𝑁))))
151150imp 445 . . 3 ((𝑀 = 0 ∧ 𝑁 ∈ ℕ0) → (𝑀↑(𝑁 + 1)) ≤ ((𝑀𝑀) · (!‘𝑁)))
152133, 151jaoian 823 . 2 (((𝑀 ∈ ℕ ∨ 𝑀 = 0) ∧ 𝑁 ∈ ℕ0) → (𝑀↑(𝑁 + 1)) ≤ ((𝑀𝑀) · (!‘𝑁)))
1531, 152sylanb 489 1 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀↑(𝑁 + 1)) ≤ ((𝑀𝑀) · (!‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384   = wceq 1480  wcel 1987   class class class wbr 4618  cfv 5852  (class class class)co 6610  cc 9886  cr 9887  0cc0 9888  1c1 9889   + caddc 9891   · cmul 9893   < clt 10026  cle 10027  cn 10972  0cn0 11244  cz 11329  cuz 11639  cexp 12808  !cfa 13008
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-er 7694  df-en 7908  df-dom 7909  df-sdom 7910  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-div 10637  df-nn 10973  df-n0 11245  df-z 11330  df-uz 11640  df-rp 11785  df-seq 12750  df-exp 12809  df-fac 13009
This theorem is referenced by:  faclbnd2  13026  faclbnd3  13027
  Copyright terms: Public domain W3C validator