MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  faclbnd2 Structured version   Visualization version   GIF version

Theorem faclbnd2 13654
Description: A lower bound for the factorial function. (Contributed by NM, 17-Dec-2005.)
Assertion
Ref Expression
faclbnd2 (𝑁 ∈ ℕ0 → ((2↑𝑁) / 2) ≤ (!‘𝑁))

Proof of Theorem faclbnd2
StepHypRef Expression
1 sq2 13563 . . . . . 6 (2↑2) = 4
2 2t2e4 11804 . . . . . 6 (2 · 2) = 4
31, 2eqtr4i 2849 . . . . 5 (2↑2) = (2 · 2)
43oveq2i 7169 . . . 4 ((2↑(𝑁 + 1)) / (2↑2)) = ((2↑(𝑁 + 1)) / (2 · 2))
5 2cn 11715 . . . . . 6 2 ∈ ℂ
6 expp1 13439 . . . . . 6 ((2 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (2↑(𝑁 + 1)) = ((2↑𝑁) · 2))
75, 6mpan 688 . . . . 5 (𝑁 ∈ ℕ0 → (2↑(𝑁 + 1)) = ((2↑𝑁) · 2))
87oveq1d 7173 . . . 4 (𝑁 ∈ ℕ0 → ((2↑(𝑁 + 1)) / (2 · 2)) = (((2↑𝑁) · 2) / (2 · 2)))
94, 8syl5eq 2870 . . 3 (𝑁 ∈ ℕ0 → ((2↑(𝑁 + 1)) / (2↑2)) = (((2↑𝑁) · 2) / (2 · 2)))
10 expcl 13450 . . . . 5 ((2 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (2↑𝑁) ∈ ℂ)
115, 10mpan 688 . . . 4 (𝑁 ∈ ℕ0 → (2↑𝑁) ∈ ℂ)
12 2cnne0 11850 . . . . 5 (2 ∈ ℂ ∧ 2 ≠ 0)
13 divmuldiv 11342 . . . . 5 ((((2↑𝑁) ∈ ℂ ∧ 2 ∈ ℂ) ∧ ((2 ∈ ℂ ∧ 2 ≠ 0) ∧ (2 ∈ ℂ ∧ 2 ≠ 0))) → (((2↑𝑁) / 2) · (2 / 2)) = (((2↑𝑁) · 2) / (2 · 2)))
1412, 12, 13mpanr12 703 . . . 4 (((2↑𝑁) ∈ ℂ ∧ 2 ∈ ℂ) → (((2↑𝑁) / 2) · (2 / 2)) = (((2↑𝑁) · 2) / (2 · 2)))
1511, 5, 14sylancl 588 . . 3 (𝑁 ∈ ℕ0 → (((2↑𝑁) / 2) · (2 / 2)) = (((2↑𝑁) · 2) / (2 · 2)))
16 2div2e1 11781 . . . . 5 (2 / 2) = 1
1716oveq2i 7169 . . . 4 (((2↑𝑁) / 2) · (2 / 2)) = (((2↑𝑁) / 2) · 1)
1811halfcld 11885 . . . . 5 (𝑁 ∈ ℕ0 → ((2↑𝑁) / 2) ∈ ℂ)
1918mulid1d 10660 . . . 4 (𝑁 ∈ ℕ0 → (((2↑𝑁) / 2) · 1) = ((2↑𝑁) / 2))
2017, 19syl5eq 2870 . . 3 (𝑁 ∈ ℕ0 → (((2↑𝑁) / 2) · (2 / 2)) = ((2↑𝑁) / 2))
219, 15, 203eqtr2rd 2865 . 2 (𝑁 ∈ ℕ0 → ((2↑𝑁) / 2) = ((2↑(𝑁 + 1)) / (2↑2)))
22 2nn0 11917 . . . 4 2 ∈ ℕ0
23 faclbnd 13653 . . . 4 ((2 ∈ ℕ0𝑁 ∈ ℕ0) → (2↑(𝑁 + 1)) ≤ ((2↑2) · (!‘𝑁)))
2422, 23mpan 688 . . 3 (𝑁 ∈ ℕ0 → (2↑(𝑁 + 1)) ≤ ((2↑2) · (!‘𝑁)))
25 2re 11714 . . . . 5 2 ∈ ℝ
26 peano2nn0 11940 . . . . 5 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
27 reexpcl 13449 . . . . 5 ((2 ∈ ℝ ∧ (𝑁 + 1) ∈ ℕ0) → (2↑(𝑁 + 1)) ∈ ℝ)
2825, 26, 27sylancr 589 . . . 4 (𝑁 ∈ ℕ0 → (2↑(𝑁 + 1)) ∈ ℝ)
29 faccl 13646 . . . . 5 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ)
3029nnred 11655 . . . 4 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℝ)
31 4re 11724 . . . . . . 7 4 ∈ ℝ
321, 31eqeltri 2911 . . . . . 6 (2↑2) ∈ ℝ
33 4pos 11747 . . . . . . 7 0 < 4
3433, 1breqtrri 5095 . . . . . 6 0 < (2↑2)
3532, 34pm3.2i 473 . . . . 5 ((2↑2) ∈ ℝ ∧ 0 < (2↑2))
36 ledivmul 11518 . . . . 5 (((2↑(𝑁 + 1)) ∈ ℝ ∧ (!‘𝑁) ∈ ℝ ∧ ((2↑2) ∈ ℝ ∧ 0 < (2↑2))) → (((2↑(𝑁 + 1)) / (2↑2)) ≤ (!‘𝑁) ↔ (2↑(𝑁 + 1)) ≤ ((2↑2) · (!‘𝑁))))
3735, 36mp3an3 1446 . . . 4 (((2↑(𝑁 + 1)) ∈ ℝ ∧ (!‘𝑁) ∈ ℝ) → (((2↑(𝑁 + 1)) / (2↑2)) ≤ (!‘𝑁) ↔ (2↑(𝑁 + 1)) ≤ ((2↑2) · (!‘𝑁))))
3828, 30, 37syl2anc 586 . . 3 (𝑁 ∈ ℕ0 → (((2↑(𝑁 + 1)) / (2↑2)) ≤ (!‘𝑁) ↔ (2↑(𝑁 + 1)) ≤ ((2↑2) · (!‘𝑁))))
3924, 38mpbird 259 . 2 (𝑁 ∈ ℕ0 → ((2↑(𝑁 + 1)) / (2↑2)) ≤ (!‘𝑁))
4021, 39eqbrtrd 5090 1 (𝑁 ∈ ℕ0 → ((2↑𝑁) / 2) ≤ (!‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wne 3018   class class class wbr 5068  cfv 6357  (class class class)co 7158  cc 10537  cr 10538  0cc0 10539  1c1 10540   + caddc 10542   · cmul 10544   < clt 10677  cle 10678   / cdiv 11299  2c2 11695  4c4 11697  0cn0 11900  cexp 13432  !cfa 13636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-seq 13373  df-exp 13433  df-fac 13637
This theorem is referenced by:  ege2le3  15445
  Copyright terms: Public domain W3C validator