MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  faclbnd5 Structured version   Visualization version   GIF version

Theorem faclbnd5 13028
Description: The factorial function grows faster than powers and exponentiations. If we consider 𝐾 and 𝑀 to be constants, the right-hand side of the inequality is a constant times 𝑁-factorial. (Contributed by NM, 24-Dec-2005.)
Assertion
Ref Expression
faclbnd5 ((𝑁 ∈ ℕ0𝐾 ∈ ℕ0𝑀 ∈ ℕ) → ((𝑁𝐾) · (𝑀𝑁)) < ((2 · ((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾)))) · (!‘𝑁)))

Proof of Theorem faclbnd5
StepHypRef Expression
1 nn0re 11248 . . . . . . . . 9 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
2 reexpcl 12820 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 𝐾 ∈ ℕ0) → (𝑁𝐾) ∈ ℝ)
31, 2sylan 488 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐾 ∈ ℕ0) → (𝑁𝐾) ∈ ℝ)
43ancoms 469 . . . . . . 7 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁𝐾) ∈ ℝ)
5 nnre 10974 . . . . . . . 8 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ)
6 reexpcl 12820 . . . . . . . 8 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → (𝑀𝑁) ∈ ℝ)
75, 6sylan 488 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝑀𝑁) ∈ ℝ)
8 remulcl 9968 . . . . . . 7 (((𝑁𝐾) ∈ ℝ ∧ (𝑀𝑁) ∈ ℝ) → ((𝑁𝐾) · (𝑀𝑁)) ∈ ℝ)
94, 7, 8syl2an 494 . . . . . 6 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0)) → ((𝑁𝐾) · (𝑀𝑁)) ∈ ℝ)
109anandirs 873 . . . . 5 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → ((𝑁𝐾) · (𝑀𝑁)) ∈ ℝ)
11 2nn 11132 . . . . . . . . . 10 2 ∈ ℕ
12 nn0sqcl 12830 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → (𝐾↑2) ∈ ℕ0)
13 nnexpcl 12816 . . . . . . . . . 10 ((2 ∈ ℕ ∧ (𝐾↑2) ∈ ℕ0) → (2↑(𝐾↑2)) ∈ ℕ)
1411, 12, 13sylancr 694 . . . . . . . . 9 (𝐾 ∈ ℕ0 → (2↑(𝐾↑2)) ∈ ℕ)
15 nnnn0 11246 . . . . . . . . . . . 12 (𝑀 ∈ ℕ → 𝑀 ∈ ℕ0)
16 nn0addcl 11275 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0) → (𝑀 + 𝐾) ∈ ℕ0)
1716ancoms 469 . . . . . . . . . . . 12 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑀 + 𝐾) ∈ ℕ0)
1815, 17sylan2 491 . . . . . . . . . . 11 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ) → (𝑀 + 𝐾) ∈ ℕ0)
19 nnexpcl 12816 . . . . . . . . . . 11 ((𝑀 ∈ ℕ ∧ (𝑀 + 𝐾) ∈ ℕ0) → (𝑀↑(𝑀 + 𝐾)) ∈ ℕ)
2018, 19sylan2 491 . . . . . . . . . 10 ((𝑀 ∈ ℕ ∧ (𝐾 ∈ ℕ0𝑀 ∈ ℕ)) → (𝑀↑(𝑀 + 𝐾)) ∈ ℕ)
2120anabss7 861 . . . . . . . . 9 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ) → (𝑀↑(𝑀 + 𝐾)) ∈ ℕ)
22 nnmulcl 10990 . . . . . . . . 9 (((2↑(𝐾↑2)) ∈ ℕ ∧ (𝑀↑(𝑀 + 𝐾)) ∈ ℕ) → ((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) ∈ ℕ)
2314, 21, 22syl2an 494 . . . . . . . 8 ((𝐾 ∈ ℕ0 ∧ (𝐾 ∈ ℕ0𝑀 ∈ ℕ)) → ((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) ∈ ℕ)
2423anabss5 856 . . . . . . 7 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ) → ((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) ∈ ℕ)
2524nnred 10982 . . . . . 6 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ) → ((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) ∈ ℝ)
26 faccl 13013 . . . . . . 7 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ)
2726nnred 10982 . . . . . 6 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℝ)
28 remulcl 9968 . . . . . 6 ((((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) ∈ ℝ ∧ (!‘𝑁) ∈ ℝ) → (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)) ∈ ℝ)
2925, 27, 28syl2an 494 . . . . 5 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)) ∈ ℝ)
30 2re 11037 . . . . . 6 2 ∈ ℝ
31 remulcl 9968 . . . . . 6 ((2 ∈ ℝ ∧ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)) ∈ ℝ) → (2 · (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁))) ∈ ℝ)
3230, 29, 31sylancr 694 . . . . 5 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (2 · (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁))) ∈ ℝ)
33 faclbnd4 13027 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → ((𝑁𝐾) · (𝑀𝑁)) ≤ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)))
3415, 33syl3an3 1358 . . . . . . 7 ((𝑁 ∈ ℕ0𝐾 ∈ ℕ0𝑀 ∈ ℕ) → ((𝑁𝐾) · (𝑀𝑁)) ≤ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)))
35343coml 1269 . . . . . 6 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((𝑁𝐾) · (𝑀𝑁)) ≤ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)))
36353expa 1262 . . . . 5 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → ((𝑁𝐾) · (𝑀𝑁)) ≤ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)))
37 1lt2 11141 . . . . . 6 1 < 2
38 nnmulcl 10990 . . . . . . . . 9 ((((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) ∈ ℕ ∧ (!‘𝑁) ∈ ℕ) → (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)) ∈ ℕ)
3924, 26, 38syl2an 494 . . . . . . . 8 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)) ∈ ℕ)
4039nngt0d 11011 . . . . . . 7 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → 0 < (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)))
41 ltmulgt12 10831 . . . . . . . 8 (((((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)) ∈ ℝ ∧ 2 ∈ ℝ ∧ 0 < (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁))) → (1 < 2 ↔ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)) < (2 · (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)))))
4230, 41mp3an2 1409 . . . . . . 7 (((((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)) ∈ ℝ ∧ 0 < (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁))) → (1 < 2 ↔ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)) < (2 · (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)))))
4329, 40, 42syl2anc 692 . . . . . 6 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (1 < 2 ↔ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)) < (2 · (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)))))
4437, 43mpbii 223 . . . . 5 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)) < (2 · (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁))))
4510, 29, 32, 36, 44lelttrd 10142 . . . 4 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → ((𝑁𝐾) · (𝑀𝑁)) < (2 · (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁))))
4624nncnd 10983 . . . . 5 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ) → ((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) ∈ ℂ)
4726nncnd 10983 . . . . 5 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℂ)
48 2cn 11038 . . . . . 6 2 ∈ ℂ
49 mulass 9971 . . . . . 6 ((2 ∈ ℂ ∧ ((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) ∈ ℂ ∧ (!‘𝑁) ∈ ℂ) → ((2 · ((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾)))) · (!‘𝑁)) = (2 · (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁))))
5048, 49mp3an1 1408 . . . . 5 ((((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) ∈ ℂ ∧ (!‘𝑁) ∈ ℂ) → ((2 · ((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾)))) · (!‘𝑁)) = (2 · (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁))))
5146, 47, 50syl2an 494 . . . 4 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → ((2 · ((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾)))) · (!‘𝑁)) = (2 · (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁))))
5245, 51breqtrrd 4643 . . 3 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → ((𝑁𝐾) · (𝑀𝑁)) < ((2 · ((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾)))) · (!‘𝑁)))
53523impa 1256 . 2 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((𝑁𝐾) · (𝑀𝑁)) < ((2 · ((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾)))) · (!‘𝑁)))
54533comr 1270 1 ((𝑁 ∈ ℕ0𝐾 ∈ ℕ0𝑀 ∈ ℕ) → ((𝑁𝐾) · (𝑀𝑁)) < ((2 · ((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾)))) · (!‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987   class class class wbr 4615  cfv 5849  (class class class)co 6607  cc 9881  cr 9882  0cc0 9883  1c1 9884   + caddc 9886   · cmul 9888   < clt 10021  cle 10022  cn 10967  2c2 11017  0cn0 11239  cexp 12803  !cfa 13003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4743  ax-nul 4751  ax-pow 4805  ax-pr 4869  ax-un 6905  ax-cnex 9939  ax-resscn 9940  ax-1cn 9941  ax-icn 9942  ax-addcl 9943  ax-addrcl 9944  ax-mulcl 9945  ax-mulrcl 9946  ax-mulcom 9947  ax-addass 9948  ax-mulass 9949  ax-distr 9950  ax-i2m1 9951  ax-1ne0 9952  ax-1rid 9953  ax-rnegex 9954  ax-rrecex 9955  ax-cnre 9956  ax-pre-lttri 9957  ax-pre-lttrn 9958  ax-pre-ltadd 9959  ax-pre-mulgt0 9960
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3419  df-csb 3516  df-dif 3559  df-un 3561  df-in 3563  df-ss 3570  df-pss 3572  df-nul 3894  df-if 4061  df-pw 4134  df-sn 4151  df-pr 4153  df-tp 4155  df-op 4157  df-uni 4405  df-iun 4489  df-br 4616  df-opab 4676  df-mpt 4677  df-tr 4715  df-eprel 4987  df-id 4991  df-po 4997  df-so 4998  df-fr 5035  df-we 5037  df-xp 5082  df-rel 5083  df-cnv 5084  df-co 5085  df-dm 5086  df-rn 5087  df-res 5088  df-ima 5089  df-pred 5641  df-ord 5687  df-on 5688  df-lim 5689  df-suc 5690  df-iota 5812  df-fun 5851  df-fn 5852  df-f 5853  df-f1 5854  df-fo 5855  df-f1o 5856  df-fv 5857  df-riota 6568  df-ov 6610  df-oprab 6611  df-mpt2 6612  df-om 7016  df-2nd 7117  df-wrecs 7355  df-recs 7416  df-rdg 7454  df-er 7690  df-en 7903  df-dom 7904  df-sdom 7905  df-pnf 10023  df-mnf 10024  df-xr 10025  df-ltxr 10026  df-le 10027  df-sub 10215  df-neg 10216  df-div 10632  df-nn 10968  df-2 11026  df-n0 11240  df-z 11325  df-uz 11635  df-rp 11780  df-seq 12745  df-exp 12804  df-fac 13004
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator