Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  faclim Structured version   Visualization version   GIF version

Theorem faclim 30687
Description: An infinite product expression relating to factorials. Originally due to Euler. (Contributed by Scott Fenton, 22-Nov-2017.)
Hypothesis
Ref Expression
faclim.1 𝐹 = (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝐴) / (1 + (𝐴 / 𝑛))))
Assertion
Ref Expression
faclim (𝐴 ∈ ℕ0 → seq1( · , 𝐹) ⇝ (!‘𝐴))
Distinct variable group:   𝐴,𝑛
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem faclim
Dummy variables 𝑎 𝑏 𝑚 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 faclim.1 . . 3 𝐹 = (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝐴) / (1 + (𝐴 / 𝑛))))
2 seqeq3 12619 . . 3 (𝐹 = (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝐴) / (1 + (𝐴 / 𝑛)))) → seq1( · , 𝐹) = seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝐴) / (1 + (𝐴 / 𝑛))))))
31, 2ax-mp 5 . 2 seq1( · , 𝐹) = seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝐴) / (1 + (𝐴 / 𝑛)))))
4 oveq2 6531 . . . . . . 7 (𝑎 = 0 → ((1 + (1 / 𝑛))↑𝑎) = ((1 + (1 / 𝑛))↑0))
5 oveq1 6530 . . . . . . . 8 (𝑎 = 0 → (𝑎 / 𝑛) = (0 / 𝑛))
65oveq2d 6539 . . . . . . 7 (𝑎 = 0 → (1 + (𝑎 / 𝑛)) = (1 + (0 / 𝑛)))
74, 6oveq12d 6541 . . . . . 6 (𝑎 = 0 → (((1 + (1 / 𝑛))↑𝑎) / (1 + (𝑎 / 𝑛))) = (((1 + (1 / 𝑛))↑0) / (1 + (0 / 𝑛))))
87mpteq2dv 4663 . . . . 5 (𝑎 = 0 → (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑎) / (1 + (𝑎 / 𝑛)))) = (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑0) / (1 + (0 / 𝑛)))))
98seqeq3d 12622 . . . 4 (𝑎 = 0 → seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑎) / (1 + (𝑎 / 𝑛))))) = seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑0) / (1 + (0 / 𝑛))))))
10 fveq2 6084 . . . . 5 (𝑎 = 0 → (!‘𝑎) = (!‘0))
11 fac0 12876 . . . . 5 (!‘0) = 1
1210, 11syl6eq 2655 . . . 4 (𝑎 = 0 → (!‘𝑎) = 1)
139, 12breq12d 4586 . . 3 (𝑎 = 0 → (seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑎) / (1 + (𝑎 / 𝑛))))) ⇝ (!‘𝑎) ↔ seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑0) / (1 + (0 / 𝑛))))) ⇝ 1))
14 oveq2 6531 . . . . . . 7 (𝑎 = 𝑚 → ((1 + (1 / 𝑛))↑𝑎) = ((1 + (1 / 𝑛))↑𝑚))
15 oveq1 6530 . . . . . . . 8 (𝑎 = 𝑚 → (𝑎 / 𝑛) = (𝑚 / 𝑛))
1615oveq2d 6539 . . . . . . 7 (𝑎 = 𝑚 → (1 + (𝑎 / 𝑛)) = (1 + (𝑚 / 𝑛)))
1714, 16oveq12d 6541 . . . . . 6 (𝑎 = 𝑚 → (((1 + (1 / 𝑛))↑𝑎) / (1 + (𝑎 / 𝑛))) = (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))
1817mpteq2dv 4663 . . . . 5 (𝑎 = 𝑚 → (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑎) / (1 + (𝑎 / 𝑛)))) = (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛)))))
1918seqeq3d 12622 . . . 4 (𝑎 = 𝑚 → seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑎) / (1 + (𝑎 / 𝑛))))) = seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))))
20 fveq2 6084 . . . 4 (𝑎 = 𝑚 → (!‘𝑎) = (!‘𝑚))
2119, 20breq12d 4586 . . 3 (𝑎 = 𝑚 → (seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑎) / (1 + (𝑎 / 𝑛))))) ⇝ (!‘𝑎) ↔ seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))) ⇝ (!‘𝑚)))
22 oveq2 6531 . . . . . . 7 (𝑎 = (𝑚 + 1) → ((1 + (1 / 𝑛))↑𝑎) = ((1 + (1 / 𝑛))↑(𝑚 + 1)))
23 oveq1 6530 . . . . . . . 8 (𝑎 = (𝑚 + 1) → (𝑎 / 𝑛) = ((𝑚 + 1) / 𝑛))
2423oveq2d 6539 . . . . . . 7 (𝑎 = (𝑚 + 1) → (1 + (𝑎 / 𝑛)) = (1 + ((𝑚 + 1) / 𝑛)))
2522, 24oveq12d 6541 . . . . . 6 (𝑎 = (𝑚 + 1) → (((1 + (1 / 𝑛))↑𝑎) / (1 + (𝑎 / 𝑛))) = (((1 + (1 / 𝑛))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑛))))
2625mpteq2dv 4663 . . . . 5 (𝑎 = (𝑚 + 1) → (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑎) / (1 + (𝑎 / 𝑛)))) = (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑛)))))
2726seqeq3d 12622 . . . 4 (𝑎 = (𝑚 + 1) → seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑎) / (1 + (𝑎 / 𝑛))))) = seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑛))))))
28 fveq2 6084 . . . 4 (𝑎 = (𝑚 + 1) → (!‘𝑎) = (!‘(𝑚 + 1)))
2927, 28breq12d 4586 . . 3 (𝑎 = (𝑚 + 1) → (seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑎) / (1 + (𝑎 / 𝑛))))) ⇝ (!‘𝑎) ↔ seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑛))))) ⇝ (!‘(𝑚 + 1))))
30 oveq2 6531 . . . . . . 7 (𝑎 = 𝐴 → ((1 + (1 / 𝑛))↑𝑎) = ((1 + (1 / 𝑛))↑𝐴))
31 oveq1 6530 . . . . . . . 8 (𝑎 = 𝐴 → (𝑎 / 𝑛) = (𝐴 / 𝑛))
3231oveq2d 6539 . . . . . . 7 (𝑎 = 𝐴 → (1 + (𝑎 / 𝑛)) = (1 + (𝐴 / 𝑛)))
3330, 32oveq12d 6541 . . . . . 6 (𝑎 = 𝐴 → (((1 + (1 / 𝑛))↑𝑎) / (1 + (𝑎 / 𝑛))) = (((1 + (1 / 𝑛))↑𝐴) / (1 + (𝐴 / 𝑛))))
3433mpteq2dv 4663 . . . . 5 (𝑎 = 𝐴 → (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑎) / (1 + (𝑎 / 𝑛)))) = (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝐴) / (1 + (𝐴 / 𝑛)))))
3534seqeq3d 12622 . . . 4 (𝑎 = 𝐴 → seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑎) / (1 + (𝑎 / 𝑛))))) = seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝐴) / (1 + (𝐴 / 𝑛))))))
36 fveq2 6084 . . . 4 (𝑎 = 𝐴 → (!‘𝑎) = (!‘𝐴))
3735, 36breq12d 4586 . . 3 (𝑎 = 𝐴 → (seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑎) / (1 + (𝑎 / 𝑛))))) ⇝ (!‘𝑎) ↔ seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝐴) / (1 + (𝐴 / 𝑛))))) ⇝ (!‘𝐴)))
38 1red 9907 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 1 ∈ ℝ)
39 nnrecre 10900 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ)
4038, 39readdcld 9921 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (1 + (1 / 𝑛)) ∈ ℝ)
4140recnd 9920 . . . . . . . . . 10 (𝑛 ∈ ℕ → (1 + (1 / 𝑛)) ∈ ℂ)
4241exp0d 12815 . . . . . . . . 9 (𝑛 ∈ ℕ → ((1 + (1 / 𝑛))↑0) = 1)
43 nncn 10871 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
44 nnne0 10896 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 𝑛 ≠ 0)
4543, 44div0d 10645 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (0 / 𝑛) = 0)
4645oveq2d 6539 . . . . . . . . . 10 (𝑛 ∈ ℕ → (1 + (0 / 𝑛)) = (1 + 0))
47 1p0e1 10976 . . . . . . . . . 10 (1 + 0) = 1
4846, 47syl6eq 2655 . . . . . . . . 9 (𝑛 ∈ ℕ → (1 + (0 / 𝑛)) = 1)
4942, 48oveq12d 6541 . . . . . . . 8 (𝑛 ∈ ℕ → (((1 + (1 / 𝑛))↑0) / (1 + (0 / 𝑛))) = (1 / 1))
50 1div1e1 10562 . . . . . . . 8 (1 / 1) = 1
5149, 50syl6eq 2655 . . . . . . 7 (𝑛 ∈ ℕ → (((1 + (1 / 𝑛))↑0) / (1 + (0 / 𝑛))) = 1)
5251mpteq2ia 4658 . . . . . 6 (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑0) / (1 + (0 / 𝑛)))) = (𝑛 ∈ ℕ ↦ 1)
53 fconstmpt 5071 . . . . . 6 (ℕ × {1}) = (𝑛 ∈ ℕ ↦ 1)
5452, 53eqtr4i 2630 . . . . 5 (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑0) / (1 + (0 / 𝑛)))) = (ℕ × {1})
55 seqeq3 12619 . . . . 5 ((𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑0) / (1 + (0 / 𝑛)))) = (ℕ × {1}) → seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑0) / (1 + (0 / 𝑛))))) = seq1( · , (ℕ × {1})))
5654, 55ax-mp 5 . . . 4 seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑0) / (1 + (0 / 𝑛))))) = seq1( · , (ℕ × {1}))
57 nnuz 11551 . . . . . 6 ℕ = (ℤ‘1)
58 1zzd 11237 . . . . . 6 (⊤ → 1 ∈ ℤ)
5957, 58climprod1 14476 . . . . 5 (⊤ → seq1( · , (ℕ × {1})) ⇝ 1)
6059trud 1483 . . . 4 seq1( · , (ℕ × {1})) ⇝ 1
6156, 60eqbrtri 4594 . . 3 seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑0) / (1 + (0 / 𝑛))))) ⇝ 1
62 1zzd 11237 . . . . . 6 ((𝑚 ∈ ℕ0 ∧ seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))) ⇝ (!‘𝑚)) → 1 ∈ ℤ)
63 simpr 475 . . . . . 6 ((𝑚 ∈ ℕ0 ∧ seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))) ⇝ (!‘𝑚)) → seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))) ⇝ (!‘𝑚))
64 seqex 12616 . . . . . . 7 seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑛))))) ∈ V
6564a1i 11 . . . . . 6 ((𝑚 ∈ ℕ0 ∧ seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))) ⇝ (!‘𝑚)) → seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑛))))) ∈ V)
66 faclimlem2 30685 . . . . . . 7 (𝑚 ∈ ℕ0 → seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (𝑚 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑚 + 1) / 𝑛))))) ⇝ (𝑚 + 1))
6766adantr 479 . . . . . 6 ((𝑚 ∈ ℕ0 ∧ seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))) ⇝ (!‘𝑚)) → seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (𝑚 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑚 + 1) / 𝑛))))) ⇝ (𝑚 + 1))
68 elnnuz 11552 . . . . . . . . . 10 (𝑎 ∈ ℕ ↔ 𝑎 ∈ (ℤ‘1))
6968biimpi 204 . . . . . . . . 9 (𝑎 ∈ ℕ → 𝑎 ∈ (ℤ‘1))
7069adantl 480 . . . . . . . 8 ((𝑚 ∈ ℕ0𝑎 ∈ ℕ) → 𝑎 ∈ (ℤ‘1))
71 1rp 11664 . . . . . . . . . . . . . . . 16 1 ∈ ℝ+
7271a1i 11 . . . . . . . . . . . . . . 15 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → 1 ∈ ℝ+)
73 nnrp 11670 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ+)
7473rpreccld 11710 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ+)
7574adantl 480 . . . . . . . . . . . . . . 15 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ+)
7672, 75rpaddcld 11715 . . . . . . . . . . . . . 14 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → (1 + (1 / 𝑛)) ∈ ℝ+)
77 nn0z 11229 . . . . . . . . . . . . . . 15 (𝑚 ∈ ℕ0𝑚 ∈ ℤ)
7877adantr 479 . . . . . . . . . . . . . 14 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → 𝑚 ∈ ℤ)
7976, 78rpexpcld 12845 . . . . . . . . . . . . 13 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → ((1 + (1 / 𝑛))↑𝑚) ∈ ℝ+)
80 1cnd 9908 . . . . . . . . . . . . . . 15 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → 1 ∈ ℂ)
81 nn0nndivcl 11205 . . . . . . . . . . . . . . . 16 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → (𝑚 / 𝑛) ∈ ℝ)
8281recnd 9920 . . . . . . . . . . . . . . 15 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → (𝑚 / 𝑛) ∈ ℂ)
8380, 82addcomd 10085 . . . . . . . . . . . . . 14 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → (1 + (𝑚 / 𝑛)) = ((𝑚 / 𝑛) + 1))
84 nn0ge0div 11274 . . . . . . . . . . . . . . 15 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → 0 ≤ (𝑚 / 𝑛))
8581, 84ge0p1rpd 11730 . . . . . . . . . . . . . 14 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → ((𝑚 / 𝑛) + 1) ∈ ℝ+)
8683, 85eqeltrd 2683 . . . . . . . . . . . . 13 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → (1 + (𝑚 / 𝑛)) ∈ ℝ+)
8779, 86rpdivcld 11717 . . . . . . . . . . . 12 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))) ∈ ℝ+)
8887rpcnd 11702 . . . . . . . . . . 11 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))) ∈ ℂ)
89 eqid 2605 . . . . . . . . . . 11 (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛)))) = (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))
9088, 89fmptd 6273 . . . . . . . . . 10 (𝑚 ∈ ℕ0 → (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛)))):ℕ⟶ℂ)
91 elfznn 12192 . . . . . . . . . 10 (𝑏 ∈ (1...𝑎) → 𝑏 ∈ ℕ)
92 ffvelrn 6246 . . . . . . . . . 10 (((𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛)))):ℕ⟶ℂ ∧ 𝑏 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))‘𝑏) ∈ ℂ)
9390, 91, 92syl2an 492 . . . . . . . . 9 ((𝑚 ∈ ℕ0𝑏 ∈ (1...𝑎)) → ((𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))‘𝑏) ∈ ℂ)
9493adantlr 746 . . . . . . . 8 (((𝑚 ∈ ℕ0𝑎 ∈ ℕ) ∧ 𝑏 ∈ (1...𝑎)) → ((𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))‘𝑏) ∈ ℂ)
95 mulcl 9872 . . . . . . . . 9 ((𝑏 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑏 · 𝑥) ∈ ℂ)
9695adantl 480 . . . . . . . 8 (((𝑚 ∈ ℕ0𝑎 ∈ ℕ) ∧ (𝑏 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑏 · 𝑥) ∈ ℂ)
9770, 94, 96seqcl 12634 . . . . . . 7 ((𝑚 ∈ ℕ0𝑎 ∈ ℕ) → (seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛)))))‘𝑎) ∈ ℂ)
9897adantlr 746 . . . . . 6 (((𝑚 ∈ ℕ0 ∧ seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))) ⇝ (!‘𝑚)) ∧ 𝑎 ∈ ℕ) → (seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛)))))‘𝑎) ∈ ℂ)
9986, 76rpmulcld 11716 . . . . . . . . . . . . 13 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → ((1 + (𝑚 / 𝑛)) · (1 + (1 / 𝑛))) ∈ ℝ+)
100 nn0p1nn 11175 . . . . . . . . . . . . . . . 16 (𝑚 ∈ ℕ0 → (𝑚 + 1) ∈ ℕ)
101100nnrpd 11698 . . . . . . . . . . . . . . 15 (𝑚 ∈ ℕ0 → (𝑚 + 1) ∈ ℝ+)
102 rpdivcl 11684 . . . . . . . . . . . . . . 15 (((𝑚 + 1) ∈ ℝ+𝑛 ∈ ℝ+) → ((𝑚 + 1) / 𝑛) ∈ ℝ+)
103101, 73, 102syl2an 492 . . . . . . . . . . . . . 14 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → ((𝑚 + 1) / 𝑛) ∈ ℝ+)
10472, 103rpaddcld 11715 . . . . . . . . . . . . 13 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → (1 + ((𝑚 + 1) / 𝑛)) ∈ ℝ+)
10599, 104rpdivcld 11717 . . . . . . . . . . . 12 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → (((1 + (𝑚 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑚 + 1) / 𝑛))) ∈ ℝ+)
106105rpcnd 11702 . . . . . . . . . . 11 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → (((1 + (𝑚 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑚 + 1) / 𝑛))) ∈ ℂ)
107 eqid 2605 . . . . . . . . . . 11 (𝑛 ∈ ℕ ↦ (((1 + (𝑚 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑚 + 1) / 𝑛)))) = (𝑛 ∈ ℕ ↦ (((1 + (𝑚 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑚 + 1) / 𝑛))))
108106, 107fmptd 6273 . . . . . . . . . 10 (𝑚 ∈ ℕ0 → (𝑛 ∈ ℕ ↦ (((1 + (𝑚 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑚 + 1) / 𝑛)))):ℕ⟶ℂ)
109 ffvelrn 6246 . . . . . . . . . 10 (((𝑛 ∈ ℕ ↦ (((1 + (𝑚 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑚 + 1) / 𝑛)))):ℕ⟶ℂ ∧ 𝑏 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (((1 + (𝑚 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑚 + 1) / 𝑛))))‘𝑏) ∈ ℂ)
110108, 91, 109syl2an 492 . . . . . . . . 9 ((𝑚 ∈ ℕ0𝑏 ∈ (1...𝑎)) → ((𝑛 ∈ ℕ ↦ (((1 + (𝑚 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑚 + 1) / 𝑛))))‘𝑏) ∈ ℂ)
111110adantlr 746 . . . . . . . 8 (((𝑚 ∈ ℕ0𝑎 ∈ ℕ) ∧ 𝑏 ∈ (1...𝑎)) → ((𝑛 ∈ ℕ ↦ (((1 + (𝑚 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑚 + 1) / 𝑛))))‘𝑏) ∈ ℂ)
11270, 111, 96seqcl 12634 . . . . . . 7 ((𝑚 ∈ ℕ0𝑎 ∈ ℕ) → (seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (𝑚 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑚 + 1) / 𝑛)))))‘𝑎) ∈ ℂ)
113112adantlr 746 . . . . . 6 (((𝑚 ∈ ℕ0 ∧ seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))) ⇝ (!‘𝑚)) ∧ 𝑎 ∈ ℕ) → (seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (𝑚 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑚 + 1) / 𝑛)))))‘𝑎) ∈ ℂ)
114 faclimlem3 30686 . . . . . . . . . . 11 ((𝑚 ∈ ℕ0𝑏 ∈ ℕ) → (((1 + (1 / 𝑏))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑏))) = ((((1 + (1 / 𝑏))↑𝑚) / (1 + (𝑚 / 𝑏))) · (((1 + (𝑚 / 𝑏)) · (1 + (1 / 𝑏))) / (1 + ((𝑚 + 1) / 𝑏)))))
115 oveq2 6531 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑏 → (1 / 𝑛) = (1 / 𝑏))
116115oveq2d 6539 . . . . . . . . . . . . . . 15 (𝑛 = 𝑏 → (1 + (1 / 𝑛)) = (1 + (1 / 𝑏)))
117116oveq1d 6538 . . . . . . . . . . . . . 14 (𝑛 = 𝑏 → ((1 + (1 / 𝑛))↑(𝑚 + 1)) = ((1 + (1 / 𝑏))↑(𝑚 + 1)))
118 oveq2 6531 . . . . . . . . . . . . . . 15 (𝑛 = 𝑏 → ((𝑚 + 1) / 𝑛) = ((𝑚 + 1) / 𝑏))
119118oveq2d 6539 . . . . . . . . . . . . . 14 (𝑛 = 𝑏 → (1 + ((𝑚 + 1) / 𝑛)) = (1 + ((𝑚 + 1) / 𝑏)))
120117, 119oveq12d 6541 . . . . . . . . . . . . 13 (𝑛 = 𝑏 → (((1 + (1 / 𝑛))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑛))) = (((1 + (1 / 𝑏))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑏))))
121 eqid 2605 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑛)))) = (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑛))))
122 ovex 6551 . . . . . . . . . . . . 13 (((1 + (1 / 𝑏))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑏))) ∈ V
123120, 121, 122fvmpt 6172 . . . . . . . . . . . 12 (𝑏 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑛))))‘𝑏) = (((1 + (1 / 𝑏))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑏))))
124123adantl 480 . . . . . . . . . . 11 ((𝑚 ∈ ℕ0𝑏 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑛))))‘𝑏) = (((1 + (1 / 𝑏))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑏))))
125116oveq1d 6538 . . . . . . . . . . . . . . 15 (𝑛 = 𝑏 → ((1 + (1 / 𝑛))↑𝑚) = ((1 + (1 / 𝑏))↑𝑚))
126 oveq2 6531 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑏 → (𝑚 / 𝑛) = (𝑚 / 𝑏))
127126oveq2d 6539 . . . . . . . . . . . . . . 15 (𝑛 = 𝑏 → (1 + (𝑚 / 𝑛)) = (1 + (𝑚 / 𝑏)))
128125, 127oveq12d 6541 . . . . . . . . . . . . . 14 (𝑛 = 𝑏 → (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))) = (((1 + (1 / 𝑏))↑𝑚) / (1 + (𝑚 / 𝑏))))
129 ovex 6551 . . . . . . . . . . . . . 14 (((1 + (1 / 𝑏))↑𝑚) / (1 + (𝑚 / 𝑏))) ∈ V
130128, 89, 129fvmpt 6172 . . . . . . . . . . . . 13 (𝑏 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))‘𝑏) = (((1 + (1 / 𝑏))↑𝑚) / (1 + (𝑚 / 𝑏))))
131127, 116oveq12d 6541 . . . . . . . . . . . . . . 15 (𝑛 = 𝑏 → ((1 + (𝑚 / 𝑛)) · (1 + (1 / 𝑛))) = ((1 + (𝑚 / 𝑏)) · (1 + (1 / 𝑏))))
132131, 119oveq12d 6541 . . . . . . . . . . . . . 14 (𝑛 = 𝑏 → (((1 + (𝑚 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑚 + 1) / 𝑛))) = (((1 + (𝑚 / 𝑏)) · (1 + (1 / 𝑏))) / (1 + ((𝑚 + 1) / 𝑏))))
133 ovex 6551 . . . . . . . . . . . . . 14 (((1 + (𝑚 / 𝑏)) · (1 + (1 / 𝑏))) / (1 + ((𝑚 + 1) / 𝑏))) ∈ V
134132, 107, 133fvmpt 6172 . . . . . . . . . . . . 13 (𝑏 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (((1 + (𝑚 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑚 + 1) / 𝑛))))‘𝑏) = (((1 + (𝑚 / 𝑏)) · (1 + (1 / 𝑏))) / (1 + ((𝑚 + 1) / 𝑏))))
135130, 134oveq12d 6541 . . . . . . . . . . . 12 (𝑏 ∈ ℕ → (((𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))‘𝑏) · ((𝑛 ∈ ℕ ↦ (((1 + (𝑚 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑚 + 1) / 𝑛))))‘𝑏)) = ((((1 + (1 / 𝑏))↑𝑚) / (1 + (𝑚 / 𝑏))) · (((1 + (𝑚 / 𝑏)) · (1 + (1 / 𝑏))) / (1 + ((𝑚 + 1) / 𝑏)))))
136135adantl 480 . . . . . . . . . . 11 ((𝑚 ∈ ℕ0𝑏 ∈ ℕ) → (((𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))‘𝑏) · ((𝑛 ∈ ℕ ↦ (((1 + (𝑚 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑚 + 1) / 𝑛))))‘𝑏)) = ((((1 + (1 / 𝑏))↑𝑚) / (1 + (𝑚 / 𝑏))) · (((1 + (𝑚 / 𝑏)) · (1 + (1 / 𝑏))) / (1 + ((𝑚 + 1) / 𝑏)))))
137114, 124, 1363eqtr4d 2649 . . . . . . . . . 10 ((𝑚 ∈ ℕ0𝑏 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑛))))‘𝑏) = (((𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))‘𝑏) · ((𝑛 ∈ ℕ ↦ (((1 + (𝑚 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑚 + 1) / 𝑛))))‘𝑏)))
13891, 137sylan2 489 . . . . . . . . 9 ((𝑚 ∈ ℕ0𝑏 ∈ (1...𝑎)) → ((𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑛))))‘𝑏) = (((𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))‘𝑏) · ((𝑛 ∈ ℕ ↦ (((1 + (𝑚 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑚 + 1) / 𝑛))))‘𝑏)))
139138adantlr 746 . . . . . . . 8 (((𝑚 ∈ ℕ0𝑎 ∈ ℕ) ∧ 𝑏 ∈ (1...𝑎)) → ((𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑛))))‘𝑏) = (((𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))‘𝑏) · ((𝑛 ∈ ℕ ↦ (((1 + (𝑚 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑚 + 1) / 𝑛))))‘𝑏)))
14070, 94, 111, 139prodfmul 14403 . . . . . . 7 ((𝑚 ∈ ℕ0𝑎 ∈ ℕ) → (seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑛)))))‘𝑎) = ((seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛)))))‘𝑎) · (seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (𝑚 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑚 + 1) / 𝑛)))))‘𝑎)))
141140adantlr 746 . . . . . 6 (((𝑚 ∈ ℕ0 ∧ seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))) ⇝ (!‘𝑚)) ∧ 𝑎 ∈ ℕ) → (seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑛)))))‘𝑎) = ((seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛)))))‘𝑎) · (seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (𝑚 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑚 + 1) / 𝑛)))))‘𝑎)))
14257, 62, 63, 65, 67, 98, 113, 141climmul 14153 . . . . 5 ((𝑚 ∈ ℕ0 ∧ seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))) ⇝ (!‘𝑚)) → seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑛))))) ⇝ ((!‘𝑚) · (𝑚 + 1)))
143 facp1 12878 . . . . . 6 (𝑚 ∈ ℕ0 → (!‘(𝑚 + 1)) = ((!‘𝑚) · (𝑚 + 1)))
144143adantr 479 . . . . 5 ((𝑚 ∈ ℕ0 ∧ seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))) ⇝ (!‘𝑚)) → (!‘(𝑚 + 1)) = ((!‘𝑚) · (𝑚 + 1)))
145142, 144breqtrrd 4601 . . . 4 ((𝑚 ∈ ℕ0 ∧ seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))) ⇝ (!‘𝑚)) → seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑛))))) ⇝ (!‘(𝑚 + 1)))
146145ex 448 . . 3 (𝑚 ∈ ℕ0 → (seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))) ⇝ (!‘𝑚) → seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑛))))) ⇝ (!‘(𝑚 + 1))))
14713, 21, 29, 37, 61, 146nn0ind 11300 . 2 (𝐴 ∈ ℕ0 → seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝐴) / (1 + (𝐴 / 𝑛))))) ⇝ (!‘𝐴))
1483, 147syl5eqbr 4608 1 (𝐴 ∈ ℕ0 → seq1( · , 𝐹) ⇝ (!‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1474  wtru 1475  wcel 1975  Vcvv 3168  {csn 4120   class class class wbr 4573  cmpt 4633   × cxp 5022  wf 5782  cfv 5786  (class class class)co 6523  cc 9786  0cc0 9788  1c1 9789   + caddc 9791   · cmul 9793   / cdiv 10529  cn 10863  0cn0 11135  cz 11206  cuz 11515  +crp 11660  ...cfz 12148  seqcseq 12614  cexp 12673  !cfa 12873  cli 14005
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-8 1977  ax-9 1984  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2228  ax-ext 2585  ax-rep 4689  ax-sep 4699  ax-nul 4708  ax-pow 4760  ax-pr 4824  ax-un 6820  ax-inf2 8394  ax-cnex 9844  ax-resscn 9845  ax-1cn 9846  ax-icn 9847  ax-addcl 9848  ax-addrcl 9849  ax-mulcl 9850  ax-mulrcl 9851  ax-mulcom 9852  ax-addass 9853  ax-mulass 9854  ax-distr 9855  ax-i2m1 9856  ax-1ne0 9857  ax-1rid 9858  ax-rnegex 9859  ax-rrecex 9860  ax-cnre 9861  ax-pre-lttri 9862  ax-pre-lttrn 9863  ax-pre-ltadd 9864  ax-pre-mulgt0 9865  ax-pre-sup 9866
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1866  df-eu 2457  df-mo 2458  df-clab 2592  df-cleq 2598  df-clel 2601  df-nfc 2735  df-ne 2777  df-nel 2778  df-ral 2896  df-rex 2897  df-reu 2898  df-rmo 2899  df-rab 2900  df-v 3170  df-sbc 3398  df-csb 3495  df-dif 3538  df-un 3540  df-in 3542  df-ss 3549  df-pss 3551  df-nul 3870  df-if 4032  df-pw 4105  df-sn 4121  df-pr 4123  df-tp 4125  df-op 4127  df-uni 4363  df-iun 4447  df-br 4574  df-opab 4634  df-mpt 4635  df-tr 4671  df-eprel 4935  df-id 4939  df-po 4945  df-so 4946  df-fr 4983  df-we 4985  df-xp 5030  df-rel 5031  df-cnv 5032  df-co 5033  df-dm 5034  df-rn 5035  df-res 5036  df-ima 5037  df-pred 5579  df-ord 5625  df-on 5626  df-lim 5627  df-suc 5628  df-iota 5750  df-fun 5788  df-fn 5789  df-f 5790  df-f1 5791  df-fo 5792  df-f1o 5793  df-fv 5794  df-riota 6485  df-ov 6526  df-oprab 6527  df-mpt2 6528  df-om 6931  df-1st 7032  df-2nd 7033  df-wrecs 7267  df-recs 7328  df-rdg 7366  df-er 7602  df-pm 7720  df-en 7815  df-dom 7816  df-sdom 7817  df-sup 8204  df-inf 8205  df-pnf 9928  df-mnf 9929  df-xr 9930  df-ltxr 9931  df-le 9932  df-sub 10115  df-neg 10116  df-div 10530  df-nn 10864  df-2 10922  df-3 10923  df-n0 11136  df-z 11207  df-uz 11516  df-rp 11661  df-fz 12149  df-fzo 12286  df-fl 12406  df-seq 12615  df-exp 12674  df-fac 12874  df-shft 13597  df-cj 13629  df-re 13630  df-im 13631  df-sqrt 13765  df-abs 13766  df-clim 14009  df-rlim 14010
This theorem is referenced by:  iprodfac  30688
  Copyright terms: Public domain W3C validator