Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  faclimlem2 Structured version   Visualization version   GIF version

Theorem faclimlem2 30684
Description: Lemma for faclim 30686. Show a limit for the inductive step. (Contributed by Scott Fenton, 15-Dec-2017.)
Assertion
Ref Expression
faclimlem2 (𝑀 ∈ ℕ0 → seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (𝑀 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑀 + 1) / 𝑛))))) ⇝ (𝑀 + 1))
Distinct variable group:   𝑛,𝑀

Proof of Theorem faclimlem2
Dummy variables 𝑘 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 faclimlem1 30683 . 2 (𝑀 ∈ ℕ0 → seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (𝑀 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑀 + 1) / 𝑛))))) = (𝑚 ∈ ℕ ↦ ((𝑀 + 1) · ((𝑚 + 1) / (𝑚 + (𝑀 + 1))))))
2 nnuz 11550 . . . 4 ℕ = (ℤ‘1)
3 1zzd 11236 . . . 4 (𝑀 ∈ ℕ0 → 1 ∈ ℤ)
4 1cnd 9907 . . . . 5 (𝑀 ∈ ℕ0 → 1 ∈ ℂ)
5 nn0p1nn 11174 . . . . . 6 (𝑀 ∈ ℕ0 → (𝑀 + 1) ∈ ℕ)
65nnzd 11308 . . . . 5 (𝑀 ∈ ℕ0 → (𝑀 + 1) ∈ ℤ)
7 nnex 10868 . . . . . . 7 ℕ ∈ V
87mptex 6363 . . . . . 6 (𝑚 ∈ ℕ ↦ ((𝑚 + 1) / (𝑚 + (𝑀 + 1)))) ∈ V
98a1i 11 . . . . 5 (𝑀 ∈ ℕ0 → (𝑚 ∈ ℕ ↦ ((𝑚 + 1) / (𝑚 + (𝑀 + 1)))) ∈ V)
10 oveq1 6529 . . . . . . . 8 (𝑚 = 𝑘 → (𝑚 + 1) = (𝑘 + 1))
11 oveq1 6529 . . . . . . . 8 (𝑚 = 𝑘 → (𝑚 + (𝑀 + 1)) = (𝑘 + (𝑀 + 1)))
1210, 11oveq12d 6540 . . . . . . 7 (𝑚 = 𝑘 → ((𝑚 + 1) / (𝑚 + (𝑀 + 1))) = ((𝑘 + 1) / (𝑘 + (𝑀 + 1))))
13 eqid 2604 . . . . . . 7 (𝑚 ∈ ℕ ↦ ((𝑚 + 1) / (𝑚 + (𝑀 + 1)))) = (𝑚 ∈ ℕ ↦ ((𝑚 + 1) / (𝑚 + (𝑀 + 1))))
14 ovex 6550 . . . . . . 7 ((𝑘 + 1) / (𝑘 + (𝑀 + 1))) ∈ V
1512, 13, 14fvmpt 6171 . . . . . 6 (𝑘 ∈ ℕ → ((𝑚 ∈ ℕ ↦ ((𝑚 + 1) / (𝑚 + (𝑀 + 1))))‘𝑘) = ((𝑘 + 1) / (𝑘 + (𝑀 + 1))))
1615adantl 480 . . . . 5 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ ((𝑚 + 1) / (𝑚 + (𝑀 + 1))))‘𝑘) = ((𝑘 + 1) / (𝑘 + (𝑀 + 1))))
172, 3, 4, 6, 9, 16divcnvlin 30672 . . . 4 (𝑀 ∈ ℕ0 → (𝑚 ∈ ℕ ↦ ((𝑚 + 1) / (𝑚 + (𝑀 + 1)))) ⇝ 1)
185nncnd 10878 . . . 4 (𝑀 ∈ ℕ0 → (𝑀 + 1) ∈ ℂ)
197mptex 6363 . . . . 5 (𝑚 ∈ ℕ ↦ ((𝑀 + 1) · ((𝑚 + 1) / (𝑚 + (𝑀 + 1))))) ∈ V
2019a1i 11 . . . 4 (𝑀 ∈ ℕ0 → (𝑚 ∈ ℕ ↦ ((𝑀 + 1) · ((𝑚 + 1) / (𝑚 + (𝑀 + 1))))) ∈ V)
21 peano2nn 10874 . . . . . . . . . 10 (𝑚 ∈ ℕ → (𝑚 + 1) ∈ ℕ)
2221adantl 480 . . . . . . . . 9 ((𝑀 ∈ ℕ0𝑚 ∈ ℕ) → (𝑚 + 1) ∈ ℕ)
2322nnred 10877 . . . . . . . 8 ((𝑀 ∈ ℕ0𝑚 ∈ ℕ) → (𝑚 + 1) ∈ ℝ)
24 simpr 475 . . . . . . . . 9 ((𝑀 ∈ ℕ0𝑚 ∈ ℕ) → 𝑚 ∈ ℕ)
255adantr 479 . . . . . . . . 9 ((𝑀 ∈ ℕ0𝑚 ∈ ℕ) → (𝑀 + 1) ∈ ℕ)
2624, 25nnaddcld 10909 . . . . . . . 8 ((𝑀 ∈ ℕ0𝑚 ∈ ℕ) → (𝑚 + (𝑀 + 1)) ∈ ℕ)
2723, 26nndivred 10911 . . . . . . 7 ((𝑀 ∈ ℕ0𝑚 ∈ ℕ) → ((𝑚 + 1) / (𝑚 + (𝑀 + 1))) ∈ ℝ)
2827recnd 9919 . . . . . 6 ((𝑀 ∈ ℕ0𝑚 ∈ ℕ) → ((𝑚 + 1) / (𝑚 + (𝑀 + 1))) ∈ ℂ)
2928, 13fmptd 6272 . . . . 5 (𝑀 ∈ ℕ0 → (𝑚 ∈ ℕ ↦ ((𝑚 + 1) / (𝑚 + (𝑀 + 1)))):ℕ⟶ℂ)
3029ffvelrnda 6247 . . . 4 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ ((𝑚 + 1) / (𝑚 + (𝑀 + 1))))‘𝑘) ∈ ℂ)
3112oveq2d 6538 . . . . . . 7 (𝑚 = 𝑘 → ((𝑀 + 1) · ((𝑚 + 1) / (𝑚 + (𝑀 + 1)))) = ((𝑀 + 1) · ((𝑘 + 1) / (𝑘 + (𝑀 + 1)))))
32 eqid 2604 . . . . . . 7 (𝑚 ∈ ℕ ↦ ((𝑀 + 1) · ((𝑚 + 1) / (𝑚 + (𝑀 + 1))))) = (𝑚 ∈ ℕ ↦ ((𝑀 + 1) · ((𝑚 + 1) / (𝑚 + (𝑀 + 1)))))
33 ovex 6550 . . . . . . 7 ((𝑀 + 1) · ((𝑘 + 1) / (𝑘 + (𝑀 + 1)))) ∈ V
3431, 32, 33fvmpt 6171 . . . . . 6 (𝑘 ∈ ℕ → ((𝑚 ∈ ℕ ↦ ((𝑀 + 1) · ((𝑚 + 1) / (𝑚 + (𝑀 + 1)))))‘𝑘) = ((𝑀 + 1) · ((𝑘 + 1) / (𝑘 + (𝑀 + 1)))))
3515oveq2d 6538 . . . . . 6 (𝑘 ∈ ℕ → ((𝑀 + 1) · ((𝑚 ∈ ℕ ↦ ((𝑚 + 1) / (𝑚 + (𝑀 + 1))))‘𝑘)) = ((𝑀 + 1) · ((𝑘 + 1) / (𝑘 + (𝑀 + 1)))))
3634, 35eqtr4d 2641 . . . . 5 (𝑘 ∈ ℕ → ((𝑚 ∈ ℕ ↦ ((𝑀 + 1) · ((𝑚 + 1) / (𝑚 + (𝑀 + 1)))))‘𝑘) = ((𝑀 + 1) · ((𝑚 ∈ ℕ ↦ ((𝑚 + 1) / (𝑚 + (𝑀 + 1))))‘𝑘)))
3736adantl 480 . . . 4 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ ((𝑀 + 1) · ((𝑚 + 1) / (𝑚 + (𝑀 + 1)))))‘𝑘) = ((𝑀 + 1) · ((𝑚 ∈ ℕ ↦ ((𝑚 + 1) / (𝑚 + (𝑀 + 1))))‘𝑘)))
382, 3, 17, 18, 20, 30, 37climmulc2 14156 . . 3 (𝑀 ∈ ℕ0 → (𝑚 ∈ ℕ ↦ ((𝑀 + 1) · ((𝑚 + 1) / (𝑚 + (𝑀 + 1))))) ⇝ ((𝑀 + 1) · 1))
3918mulid1d 9908 . . 3 (𝑀 ∈ ℕ0 → ((𝑀 + 1) · 1) = (𝑀 + 1))
4038, 39breqtrd 4598 . 2 (𝑀 ∈ ℕ0 → (𝑚 ∈ ℕ ↦ ((𝑀 + 1) · ((𝑚 + 1) / (𝑚 + (𝑀 + 1))))) ⇝ (𝑀 + 1))
411, 40eqbrtrd 4594 1 (𝑀 ∈ ℕ0 → seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (𝑀 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑀 + 1) / 𝑛))))) ⇝ (𝑀 + 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1474  wcel 1975  Vcvv 3167   class class class wbr 4572  cmpt 4632  cfv 5785  (class class class)co 6522  cc 9785  1c1 9788   + caddc 9790   · cmul 9792   / cdiv 10528  cn 10862  0cn0 11134  seqcseq 12613  cli 14004
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-8 1977  ax-9 1984  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2227  ax-ext 2584  ax-rep 4688  ax-sep 4698  ax-nul 4707  ax-pow 4759  ax-pr 4823  ax-un 6819  ax-cnex 9843  ax-resscn 9844  ax-1cn 9845  ax-icn 9846  ax-addcl 9847  ax-addrcl 9848  ax-mulcl 9849  ax-mulrcl 9850  ax-mulcom 9851  ax-addass 9852  ax-mulass 9853  ax-distr 9854  ax-i2m1 9855  ax-1ne0 9856  ax-1rid 9857  ax-rnegex 9858  ax-rrecex 9859  ax-cnre 9860  ax-pre-lttri 9861  ax-pre-lttrn 9862  ax-pre-ltadd 9863  ax-pre-mulgt0 9864  ax-pre-sup 9865
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1866  df-eu 2456  df-mo 2457  df-clab 2591  df-cleq 2597  df-clel 2600  df-nfc 2734  df-ne 2776  df-nel 2777  df-ral 2895  df-rex 2896  df-reu 2897  df-rmo 2898  df-rab 2899  df-v 3169  df-sbc 3397  df-csb 3494  df-dif 3537  df-un 3539  df-in 3541  df-ss 3548  df-pss 3550  df-nul 3869  df-if 4031  df-pw 4104  df-sn 4120  df-pr 4122  df-tp 4124  df-op 4126  df-uni 4362  df-iun 4446  df-br 4573  df-opab 4633  df-mpt 4634  df-tr 4670  df-eprel 4934  df-id 4938  df-po 4944  df-so 4945  df-fr 4982  df-we 4984  df-xp 5029  df-rel 5030  df-cnv 5031  df-co 5032  df-dm 5033  df-rn 5034  df-res 5035  df-ima 5036  df-pred 5578  df-ord 5624  df-on 5625  df-lim 5626  df-suc 5627  df-iota 5749  df-fun 5787  df-fn 5788  df-f 5789  df-f1 5790  df-fo 5791  df-f1o 5792  df-fv 5793  df-riota 6484  df-ov 6525  df-oprab 6526  df-mpt2 6527  df-om 6930  df-2nd 7032  df-wrecs 7266  df-recs 7327  df-rdg 7365  df-er 7601  df-pm 7719  df-en 7814  df-dom 7815  df-sdom 7816  df-sup 8203  df-inf 8204  df-pnf 9927  df-mnf 9928  df-xr 9929  df-ltxr 9930  df-le 9931  df-sub 10114  df-neg 10115  df-div 10529  df-nn 10863  df-2 10921  df-3 10922  df-n0 11135  df-z 11206  df-uz 11515  df-rp 11660  df-fl 12405  df-seq 12614  df-exp 12673  df-shft 13596  df-cj 13628  df-re 13629  df-im 13630  df-sqrt 13764  df-abs 13765  df-clim 14008  df-rlim 14009
This theorem is referenced by:  faclim  30686
  Copyright terms: Public domain W3C validator