MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  facnn Structured version   Visualization version   GIF version

Theorem facnn 13625
Description: Value of the factorial function for positive integers. (Contributed by NM, 2-Dec-2004.) (Revised by Mario Carneiro, 13-Jul-2013.)
Assertion
Ref Expression
facnn (𝑁 ∈ ℕ → (!‘𝑁) = (seq1( · , I )‘𝑁))

Proof of Theorem facnn
StepHypRef Expression
1 c0ex 10624 . . . 4 0 ∈ V
21a1i 11 . . 3 (𝑁 ∈ (ℕ0 ∖ {0}) → 0 ∈ V)
3 1ex 10626 . . . 4 1 ∈ V
43a1i 11 . . 3 (𝑁 ∈ (ℕ0 ∖ {0}) → 1 ∈ V)
5 df-fac 13624 . . . 4 ! = ({⟨0, 1⟩} ∪ seq1( · , I ))
6 nnuz 12270 . . . . . . . 8 ℕ = (ℤ‘1)
7 dfn2 11899 . . . . . . . 8 ℕ = (ℕ0 ∖ {0})
86, 7eqtr3i 2846 . . . . . . 7 (ℤ‘1) = (ℕ0 ∖ {0})
98reseq2i 5844 . . . . . 6 (seq1( · , I ) ↾ (ℤ‘1)) = (seq1( · , I ) ↾ (ℕ0 ∖ {0}))
10 1z 12001 . . . . . . 7 1 ∈ ℤ
11 seqfn 13371 . . . . . . 7 (1 ∈ ℤ → seq1( · , I ) Fn (ℤ‘1))
12 fnresdm 6460 . . . . . . 7 (seq1( · , I ) Fn (ℤ‘1) → (seq1( · , I ) ↾ (ℤ‘1)) = seq1( · , I ))
1310, 11, 12mp2b 10 . . . . . 6 (seq1( · , I ) ↾ (ℤ‘1)) = seq1( · , I )
149, 13eqtr3i 2846 . . . . 5 (seq1( · , I ) ↾ (ℕ0 ∖ {0})) = seq1( · , I )
1514uneq2i 4135 . . . 4 ({⟨0, 1⟩} ∪ (seq1( · , I ) ↾ (ℕ0 ∖ {0}))) = ({⟨0, 1⟩} ∪ seq1( · , I ))
165, 15eqtr4i 2847 . . 3 ! = ({⟨0, 1⟩} ∪ (seq1( · , I ) ↾ (ℕ0 ∖ {0})))
17 id 22 . . 3 (𝑁 ∈ (ℕ0 ∖ {0}) → 𝑁 ∈ (ℕ0 ∖ {0}))
182, 4, 16, 17fvsnun2 6938 . 2 (𝑁 ∈ (ℕ0 ∖ {0}) → (!‘𝑁) = (seq1( · , I )‘𝑁))
1918, 7eleq2s 2931 1 (𝑁 ∈ ℕ → (!‘𝑁) = (seq1( · , I )‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1528  wcel 2105  Vcvv 3495  cdif 3932  cun 3933  {csn 4559  cop 4565   I cid 5453  cres 5551   Fn wfn 6344  cfv 6349  0cc0 10526  1c1 10527   · cmul 10531  cn 11627  0cn0 11886  cz 11970  cuz 12232  seqcseq 13359  !cfa 13623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7450  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3497  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4833  df-iun 4914  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7569  df-2nd 7681  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-er 8279  df-en 8499  df-dom 8500  df-sdom 8501  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11628  df-n0 11887  df-z 11971  df-uz 12233  df-seq 13360  df-fac 13624
This theorem is referenced by:  fac1  13627  facp1  13628  bcval5  13668  fprodfac  15317  logfac  25111  wilthlem3  25575
  Copyright terms: Public domain W3C validator