MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  facubnd Structured version   Visualization version   GIF version

Theorem facubnd 13027
Description: An upper bound for the factorial function. (Contributed by Mario Carneiro, 15-Apr-2016.)
Assertion
Ref Expression
facubnd (𝑁 ∈ ℕ0 → (!‘𝑁) ≤ (𝑁𝑁))

Proof of Theorem facubnd
Dummy variables 𝑚 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6148 . . . 4 (𝑚 = 0 → (!‘𝑚) = (!‘0))
2 fac0 13003 . . . 4 (!‘0) = 1
31, 2syl6eq 2671 . . 3 (𝑚 = 0 → (!‘𝑚) = 1)
4 id 22 . . . . 5 (𝑚 = 0 → 𝑚 = 0)
54, 4oveq12d 6622 . . . 4 (𝑚 = 0 → (𝑚𝑚) = (0↑0))
6 0exp0e1 12805 . . . 4 (0↑0) = 1
75, 6syl6eq 2671 . . 3 (𝑚 = 0 → (𝑚𝑚) = 1)
83, 7breq12d 4626 . 2 (𝑚 = 0 → ((!‘𝑚) ≤ (𝑚𝑚) ↔ 1 ≤ 1))
9 fveq2 6148 . . 3 (𝑚 = 𝑘 → (!‘𝑚) = (!‘𝑘))
10 id 22 . . . 4 (𝑚 = 𝑘𝑚 = 𝑘)
1110, 10oveq12d 6622 . . 3 (𝑚 = 𝑘 → (𝑚𝑚) = (𝑘𝑘))
129, 11breq12d 4626 . 2 (𝑚 = 𝑘 → ((!‘𝑚) ≤ (𝑚𝑚) ↔ (!‘𝑘) ≤ (𝑘𝑘)))
13 fveq2 6148 . . 3 (𝑚 = (𝑘 + 1) → (!‘𝑚) = (!‘(𝑘 + 1)))
14 id 22 . . . 4 (𝑚 = (𝑘 + 1) → 𝑚 = (𝑘 + 1))
1514, 14oveq12d 6622 . . 3 (𝑚 = (𝑘 + 1) → (𝑚𝑚) = ((𝑘 + 1)↑(𝑘 + 1)))
1613, 15breq12d 4626 . 2 (𝑚 = (𝑘 + 1) → ((!‘𝑚) ≤ (𝑚𝑚) ↔ (!‘(𝑘 + 1)) ≤ ((𝑘 + 1)↑(𝑘 + 1))))
17 fveq2 6148 . . 3 (𝑚 = 𝑁 → (!‘𝑚) = (!‘𝑁))
18 id 22 . . . 4 (𝑚 = 𝑁𝑚 = 𝑁)
1918, 18oveq12d 6622 . . 3 (𝑚 = 𝑁 → (𝑚𝑚) = (𝑁𝑁))
2017, 19breq12d 4626 . 2 (𝑚 = 𝑁 → ((!‘𝑚) ≤ (𝑚𝑚) ↔ (!‘𝑁) ≤ (𝑁𝑁)))
21 1le1 10599 . 2 1 ≤ 1
22 faccl 13010 . . . . . . . 8 (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℕ)
2322adantr 481 . . . . . . 7 ((𝑘 ∈ ℕ0 ∧ (!‘𝑘) ≤ (𝑘𝑘)) → (!‘𝑘) ∈ ℕ)
2423nnred 10979 . . . . . 6 ((𝑘 ∈ ℕ0 ∧ (!‘𝑘) ≤ (𝑘𝑘)) → (!‘𝑘) ∈ ℝ)
25 nn0re 11245 . . . . . . . 8 (𝑘 ∈ ℕ0𝑘 ∈ ℝ)
2625adantr 481 . . . . . . 7 ((𝑘 ∈ ℕ0 ∧ (!‘𝑘) ≤ (𝑘𝑘)) → 𝑘 ∈ ℝ)
27 simpl 473 . . . . . . 7 ((𝑘 ∈ ℕ0 ∧ (!‘𝑘) ≤ (𝑘𝑘)) → 𝑘 ∈ ℕ0)
2826, 27reexpcld 12965 . . . . . 6 ((𝑘 ∈ ℕ0 ∧ (!‘𝑘) ≤ (𝑘𝑘)) → (𝑘𝑘) ∈ ℝ)
29 nn0p1nn 11276 . . . . . . . . 9 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ)
3029adantr 481 . . . . . . . 8 ((𝑘 ∈ ℕ0 ∧ (!‘𝑘) ≤ (𝑘𝑘)) → (𝑘 + 1) ∈ ℕ)
3130nnred 10979 . . . . . . 7 ((𝑘 ∈ ℕ0 ∧ (!‘𝑘) ≤ (𝑘𝑘)) → (𝑘 + 1) ∈ ℝ)
3231, 27reexpcld 12965 . . . . . 6 ((𝑘 ∈ ℕ0 ∧ (!‘𝑘) ≤ (𝑘𝑘)) → ((𝑘 + 1)↑𝑘) ∈ ℝ)
33 simpr 477 . . . . . 6 ((𝑘 ∈ ℕ0 ∧ (!‘𝑘) ≤ (𝑘𝑘)) → (!‘𝑘) ≤ (𝑘𝑘))
34 nn0ge0 11262 . . . . . . . 8 (𝑘 ∈ ℕ0 → 0 ≤ 𝑘)
3534adantr 481 . . . . . . 7 ((𝑘 ∈ ℕ0 ∧ (!‘𝑘) ≤ (𝑘𝑘)) → 0 ≤ 𝑘)
3626lep1d 10899 . . . . . . 7 ((𝑘 ∈ ℕ0 ∧ (!‘𝑘) ≤ (𝑘𝑘)) → 𝑘 ≤ (𝑘 + 1))
37 leexp1a 12859 . . . . . . 7 (((𝑘 ∈ ℝ ∧ (𝑘 + 1) ∈ ℝ ∧ 𝑘 ∈ ℕ0) ∧ (0 ≤ 𝑘𝑘 ≤ (𝑘 + 1))) → (𝑘𝑘) ≤ ((𝑘 + 1)↑𝑘))
3826, 31, 27, 35, 36, 37syl32anc 1331 . . . . . 6 ((𝑘 ∈ ℕ0 ∧ (!‘𝑘) ≤ (𝑘𝑘)) → (𝑘𝑘) ≤ ((𝑘 + 1)↑𝑘))
3924, 28, 32, 33, 38letrd 10138 . . . . 5 ((𝑘 ∈ ℕ0 ∧ (!‘𝑘) ≤ (𝑘𝑘)) → (!‘𝑘) ≤ ((𝑘 + 1)↑𝑘))
4030nngt0d 11008 . . . . . 6 ((𝑘 ∈ ℕ0 ∧ (!‘𝑘) ≤ (𝑘𝑘)) → 0 < (𝑘 + 1))
41 lemul1 10819 . . . . . 6 (((!‘𝑘) ∈ ℝ ∧ ((𝑘 + 1)↑𝑘) ∈ ℝ ∧ ((𝑘 + 1) ∈ ℝ ∧ 0 < (𝑘 + 1))) → ((!‘𝑘) ≤ ((𝑘 + 1)↑𝑘) ↔ ((!‘𝑘) · (𝑘 + 1)) ≤ (((𝑘 + 1)↑𝑘) · (𝑘 + 1))))
4224, 32, 31, 40, 41syl112anc 1327 . . . . 5 ((𝑘 ∈ ℕ0 ∧ (!‘𝑘) ≤ (𝑘𝑘)) → ((!‘𝑘) ≤ ((𝑘 + 1)↑𝑘) ↔ ((!‘𝑘) · (𝑘 + 1)) ≤ (((𝑘 + 1)↑𝑘) · (𝑘 + 1))))
4339, 42mpbid 222 . . . 4 ((𝑘 ∈ ℕ0 ∧ (!‘𝑘) ≤ (𝑘𝑘)) → ((!‘𝑘) · (𝑘 + 1)) ≤ (((𝑘 + 1)↑𝑘) · (𝑘 + 1)))
44 facp1 13005 . . . . 5 (𝑘 ∈ ℕ0 → (!‘(𝑘 + 1)) = ((!‘𝑘) · (𝑘 + 1)))
4544adantr 481 . . . 4 ((𝑘 ∈ ℕ0 ∧ (!‘𝑘) ≤ (𝑘𝑘)) → (!‘(𝑘 + 1)) = ((!‘𝑘) · (𝑘 + 1)))
4630nncnd 10980 . . . . 5 ((𝑘 ∈ ℕ0 ∧ (!‘𝑘) ≤ (𝑘𝑘)) → (𝑘 + 1) ∈ ℂ)
4746, 27expp1d 12949 . . . 4 ((𝑘 ∈ ℕ0 ∧ (!‘𝑘) ≤ (𝑘𝑘)) → ((𝑘 + 1)↑(𝑘 + 1)) = (((𝑘 + 1)↑𝑘) · (𝑘 + 1)))
4843, 45, 473brtr4d 4645 . . 3 ((𝑘 ∈ ℕ0 ∧ (!‘𝑘) ≤ (𝑘𝑘)) → (!‘(𝑘 + 1)) ≤ ((𝑘 + 1)↑(𝑘 + 1)))
4948ex 450 . 2 (𝑘 ∈ ℕ0 → ((!‘𝑘) ≤ (𝑘𝑘) → (!‘(𝑘 + 1)) ≤ ((𝑘 + 1)↑(𝑘 + 1))))
508, 12, 16, 20, 21, 49nn0ind 11416 1 (𝑁 ∈ ℕ0 → (!‘𝑁) ≤ (𝑁𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987   class class class wbr 4613  cfv 5847  (class class class)co 6604  cr 9879  0cc0 9880  1c1 9881   + caddc 9883   · cmul 9885   < clt 10018  cle 10019  cn 10964  0cn0 11236  cexp 12800  !cfa 13000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-n0 11237  df-z 11322  df-uz 11632  df-seq 12742  df-exp 12801  df-fac 13001
This theorem is referenced by:  logfacubnd  24846  pgrple2abl  41431
  Copyright terms: Public domain W3C validator