Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  faeval Structured version   Visualization version   GIF version

Theorem faeval 30437
Description: Value of the 'almost everywhere' relation for a given relation and measure. (Contributed by Thierry Arnoux, 22-Oct-2017.)
Assertion
Ref Expression
faeval ((𝑅 ∈ V ∧ 𝑀 ran measures) → (𝑅~ a.e.𝑀) = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (dom 𝑅𝑚 dom 𝑀) ∧ 𝑔 ∈ (dom 𝑅𝑚 dom 𝑀)) ∧ {𝑥 dom 𝑀 ∣ (𝑓𝑥)𝑅(𝑔𝑥)}a.e.𝑀)})
Distinct variable groups:   𝑓,𝑔,𝑥,𝑀   𝑅,𝑓,𝑔,𝑥

Proof of Theorem faeval
Dummy variables 𝑚 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 472 . . . . . . . 8 ((𝑟 = 𝑅𝑚 = 𝑀) → 𝑟 = 𝑅)
21dmeqd 5358 . . . . . . 7 ((𝑟 = 𝑅𝑚 = 𝑀) → dom 𝑟 = dom 𝑅)
3 simpr 476 . . . . . . . . 9 ((𝑟 = 𝑅𝑚 = 𝑀) → 𝑚 = 𝑀)
43dmeqd 5358 . . . . . . . 8 ((𝑟 = 𝑅𝑚 = 𝑀) → dom 𝑚 = dom 𝑀)
54unieqd 4478 . . . . . . 7 ((𝑟 = 𝑅𝑚 = 𝑀) → dom 𝑚 = dom 𝑀)
62, 5oveq12d 6708 . . . . . 6 ((𝑟 = 𝑅𝑚 = 𝑀) → (dom 𝑟𝑚 dom 𝑚) = (dom 𝑅𝑚 dom 𝑀))
76eleq2d 2716 . . . . 5 ((𝑟 = 𝑅𝑚 = 𝑀) → (𝑓 ∈ (dom 𝑟𝑚 dom 𝑚) ↔ 𝑓 ∈ (dom 𝑅𝑚 dom 𝑀)))
86eleq2d 2716 . . . . 5 ((𝑟 = 𝑅𝑚 = 𝑀) → (𝑔 ∈ (dom 𝑟𝑚 dom 𝑚) ↔ 𝑔 ∈ (dom 𝑅𝑚 dom 𝑀)))
97, 8anbi12d 747 . . . 4 ((𝑟 = 𝑅𝑚 = 𝑀) → ((𝑓 ∈ (dom 𝑟𝑚 dom 𝑚) ∧ 𝑔 ∈ (dom 𝑟𝑚 dom 𝑚)) ↔ (𝑓 ∈ (dom 𝑅𝑚 dom 𝑀) ∧ 𝑔 ∈ (dom 𝑅𝑚 dom 𝑀))))
101breqd 4696 . . . . . 6 ((𝑟 = 𝑅𝑚 = 𝑀) → ((𝑓𝑥)𝑟(𝑔𝑥) ↔ (𝑓𝑥)𝑅(𝑔𝑥)))
115, 10rabeqbidv 3226 . . . . 5 ((𝑟 = 𝑅𝑚 = 𝑀) → {𝑥 dom 𝑚 ∣ (𝑓𝑥)𝑟(𝑔𝑥)} = {𝑥 dom 𝑀 ∣ (𝑓𝑥)𝑅(𝑔𝑥)})
1211, 3breq12d 4698 . . . 4 ((𝑟 = 𝑅𝑚 = 𝑀) → ({𝑥 dom 𝑚 ∣ (𝑓𝑥)𝑟(𝑔𝑥)}a.e.𝑚 ↔ {𝑥 dom 𝑀 ∣ (𝑓𝑥)𝑅(𝑔𝑥)}a.e.𝑀))
139, 12anbi12d 747 . . 3 ((𝑟 = 𝑅𝑚 = 𝑀) → (((𝑓 ∈ (dom 𝑟𝑚 dom 𝑚) ∧ 𝑔 ∈ (dom 𝑟𝑚 dom 𝑚)) ∧ {𝑥 dom 𝑚 ∣ (𝑓𝑥)𝑟(𝑔𝑥)}a.e.𝑚) ↔ ((𝑓 ∈ (dom 𝑅𝑚 dom 𝑀) ∧ 𝑔 ∈ (dom 𝑅𝑚 dom 𝑀)) ∧ {𝑥 dom 𝑀 ∣ (𝑓𝑥)𝑅(𝑔𝑥)}a.e.𝑀)))
1413opabbidv 4749 . 2 ((𝑟 = 𝑅𝑚 = 𝑀) → {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (dom 𝑟𝑚 dom 𝑚) ∧ 𝑔 ∈ (dom 𝑟𝑚 dom 𝑚)) ∧ {𝑥 dom 𝑚 ∣ (𝑓𝑥)𝑟(𝑔𝑥)}a.e.𝑚)} = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (dom 𝑅𝑚 dom 𝑀) ∧ 𝑔 ∈ (dom 𝑅𝑚 dom 𝑀)) ∧ {𝑥 dom 𝑀 ∣ (𝑓𝑥)𝑅(𝑔𝑥)}a.e.𝑀)})
15 df-fae 30436 . 2 ~ a.e. = (𝑟 ∈ V, 𝑚 ran measures ↦ {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (dom 𝑟𝑚 dom 𝑚) ∧ 𝑔 ∈ (dom 𝑟𝑚 dom 𝑚)) ∧ {𝑥 dom 𝑚 ∣ (𝑓𝑥)𝑟(𝑔𝑥)}a.e.𝑚)})
16 ovex 6718 . . . 4 (dom 𝑅𝑚 dom 𝑀) ∈ V
1716, 16xpex 7004 . . 3 ((dom 𝑅𝑚 dom 𝑀) × (dom 𝑅𝑚 dom 𝑀)) ∈ V
18 opabssxp 5227 . . 3 {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (dom 𝑅𝑚 dom 𝑀) ∧ 𝑔 ∈ (dom 𝑅𝑚 dom 𝑀)) ∧ {𝑥 dom 𝑀 ∣ (𝑓𝑥)𝑅(𝑔𝑥)}a.e.𝑀)} ⊆ ((dom 𝑅𝑚 dom 𝑀) × (dom 𝑅𝑚 dom 𝑀))
1917, 18ssexi 4836 . 2 {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (dom 𝑅𝑚 dom 𝑀) ∧ 𝑔 ∈ (dom 𝑅𝑚 dom 𝑀)) ∧ {𝑥 dom 𝑀 ∣ (𝑓𝑥)𝑅(𝑔𝑥)}a.e.𝑀)} ∈ V
2014, 15, 19ovmpt2a 6833 1 ((𝑅 ∈ V ∧ 𝑀 ran measures) → (𝑅~ a.e.𝑀) = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (dom 𝑅𝑚 dom 𝑀) ∧ 𝑔 ∈ (dom 𝑅𝑚 dom 𝑀)) ∧ {𝑥 dom 𝑀 ∣ (𝑓𝑥)𝑅(𝑔𝑥)}a.e.𝑀)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1523  wcel 2030  {crab 2945  Vcvv 3231   cuni 4468   class class class wbr 4685  {copab 4745   × cxp 5141  dom cdm 5143  ran crn 5144  cfv 5926  (class class class)co 6690  𝑚 cmap 7899  measurescmeas 30386  a.e.cae 30428  ~ a.e.cfae 30429
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-iota 5889  df-fun 5928  df-fv 5934  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-fae 30436
This theorem is referenced by:  relfae  30438  brfae  30439
  Copyright terms: Public domain W3C validator