MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  falanfal Structured version   Visualization version   GIF version

Theorem falanfal 1499
Description: A identity. (Contributed by Anthony Hart, 22-Oct-2010.)
Assertion
Ref Expression
falanfal ((⊥ ∧ ⊥) ↔ ⊥)

Proof of Theorem falanfal
StepHypRef Expression
1 anidm 673 1 ((⊥ ∧ ⊥) ↔ ⊥)
Colors of variables: wff setvar class
Syntax hints:  wb 194  wa 382  wfal 1479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 195  df-an 384
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator