MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  falnantru Structured version   Visualization version   GIF version

Theorem falnantru 1525
Description: A identity. (Contributed by Anthony Hart, 23-Oct-2010.) (Proof shortened by Andrew Salmon, 13-May-2011.)
Assertion
Ref Expression
falnantru ((⊥ ⊼ ⊤) ↔ ⊤)

Proof of Theorem falnantru
StepHypRef Expression
1 nancom 1449 . 2 ((⊥ ⊼ ⊤) ↔ (⊤ ⊼ ⊥))
2 trunanfal 1524 . 2 ((⊤ ⊼ ⊥) ↔ ⊤)
31, 2bitri 264 1 ((⊥ ⊼ ⊤) ↔ ⊤)
Colors of variables: wff setvar class
Syntax hints:  wb 196  wnan 1446  wtru 1483  wfal 1487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-an 386  df-nan 1447  df-tru 1485  df-fal 1488
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator