![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > faovcl | Structured version Visualization version GIF version |
Description: Closure law for an operation, analogous to fovcl 6930. (Contributed by Alexander van der Vekens, 26-May-2017.) |
Ref | Expression |
---|---|
faovcl.1 | ⊢ 𝐹:(𝑅 × 𝑆)⟶𝐶 |
Ref | Expression |
---|---|
faovcl | ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → ((𝐴𝐹𝐵)) ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | faovcl.1 | . . 3 ⊢ 𝐹:(𝑅 × 𝑆)⟶𝐶 | |
2 | ffnaov 41785 | . . . 4 ⊢ (𝐹:(𝑅 × 𝑆)⟶𝐶 ↔ (𝐹 Fn (𝑅 × 𝑆) ∧ ∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑆 ((𝑥𝐹𝑦)) ∈ 𝐶)) | |
3 | 2 | simprbi 483 | . . 3 ⊢ (𝐹:(𝑅 × 𝑆)⟶𝐶 → ∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑆 ((𝑥𝐹𝑦)) ∈ 𝐶) |
4 | 1, 3 | ax-mp 5 | . 2 ⊢ ∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑆 ((𝑥𝐹𝑦)) ∈ 𝐶 |
5 | eqidd 2761 | . . . . 5 ⊢ (𝑥 = 𝐴 → 𝐹 = 𝐹) | |
6 | id 22 | . . . . 5 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
7 | eqidd 2761 | . . . . 5 ⊢ (𝑥 = 𝐴 → 𝑦 = 𝑦) | |
8 | 5, 6, 7 | aoveq123d 41764 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥𝐹𝑦)) = ((𝐴𝐹𝑦)) ) |
9 | 8 | eleq1d 2824 | . . 3 ⊢ (𝑥 = 𝐴 → ( ((𝑥𝐹𝑦)) ∈ 𝐶 ↔ ((𝐴𝐹𝑦)) ∈ 𝐶)) |
10 | eqidd 2761 | . . . . 5 ⊢ (𝑦 = 𝐵 → 𝐹 = 𝐹) | |
11 | eqidd 2761 | . . . . 5 ⊢ (𝑦 = 𝐵 → 𝐴 = 𝐴) | |
12 | id 22 | . . . . 5 ⊢ (𝑦 = 𝐵 → 𝑦 = 𝐵) | |
13 | 10, 11, 12 | aoveq123d 41764 | . . . 4 ⊢ (𝑦 = 𝐵 → ((𝐴𝐹𝑦)) = ((𝐴𝐹𝐵)) ) |
14 | 13 | eleq1d 2824 | . . 3 ⊢ (𝑦 = 𝐵 → ( ((𝐴𝐹𝑦)) ∈ 𝐶 ↔ ((𝐴𝐹𝐵)) ∈ 𝐶)) |
15 | 9, 14 | rspc2v 3461 | . 2 ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → (∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑆 ((𝑥𝐹𝑦)) ∈ 𝐶 → ((𝐴𝐹𝐵)) ∈ 𝐶)) |
16 | 4, 15 | mpi 20 | 1 ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → ((𝐴𝐹𝐵)) ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ∀wral 3050 × cxp 5264 Fn wfn 6044 ⟶wf 6045 ((caov 41701 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pr 5055 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-fv 6057 df-dfat 41702 df-afv 41703 df-aov 41704 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |