Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fargshiftfva Structured version   Visualization version   GIF version

Theorem fargshiftfva 43480
Description: The values of a shifted function correspond to the value of the original function. (Contributed by Alexander van der Vekens, 24-Nov-2017.)
Hypothesis
Ref Expression
fargshift.g 𝐺 = (𝑥 ∈ (0..^(♯‘𝐹)) ↦ (𝐹‘(𝑥 + 1)))
Assertion
Ref Expression
fargshiftfva ((𝑁 ∈ ℕ0𝐹:(1...𝑁)⟶dom 𝐸) → (∀𝑘 ∈ (1...𝑁)(𝐸‘(𝐹𝑘)) = 𝑘 / 𝑥𝑃 → ∀𝑙 ∈ (0..^𝑁)(𝐸‘(𝐺𝑙)) = (𝑙 + 1) / 𝑥𝑃))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐸   𝑘,𝐹,𝑙,𝑥   𝑥,𝑁   𝑘,𝐸   𝑘,𝐺   𝑘,𝑁   𝑃,𝑘   𝐸,𝑙   𝑁,𝑙   𝑃,𝑙
Allowed substitution hints:   𝑃(𝑥)   𝐺(𝑥,𝑙)

Proof of Theorem fargshiftfva
StepHypRef Expression
1 fz0add1fz1 13095 . . . . . . 7 ((𝑁 ∈ ℕ0𝑙 ∈ (0..^𝑁)) → (𝑙 + 1) ∈ (1...𝑁))
2 simpl 483 . . . . . . . . . . 11 (((𝑙 + 1) ∈ (1...𝑁) ∧ (𝑁 ∈ ℕ0𝑙 ∈ (0..^𝑁))) → (𝑙 + 1) ∈ (1...𝑁))
32adantr 481 . . . . . . . . . 10 ((((𝑙 + 1) ∈ (1...𝑁) ∧ (𝑁 ∈ ℕ0𝑙 ∈ (0..^𝑁))) ∧ 𝐹:(1...𝑁)⟶dom 𝐸) → (𝑙 + 1) ∈ (1...𝑁))
4 2fveq3 6668 . . . . . . . . . . . . 13 (𝑘 = (𝑙 + 1) → (𝐸‘(𝐹𝑘)) = (𝐸‘(𝐹‘(𝑙 + 1))))
5 csbeq1 3883 . . . . . . . . . . . . 13 (𝑘 = (𝑙 + 1) → 𝑘 / 𝑥𝑃 = (𝑙 + 1) / 𝑥𝑃)
64, 5eqeq12d 2834 . . . . . . . . . . . 12 (𝑘 = (𝑙 + 1) → ((𝐸‘(𝐹𝑘)) = 𝑘 / 𝑥𝑃 ↔ (𝐸‘(𝐹‘(𝑙 + 1))) = (𝑙 + 1) / 𝑥𝑃))
76adantl 482 . . . . . . . . . . 11 (((((𝑙 + 1) ∈ (1...𝑁) ∧ (𝑁 ∈ ℕ0𝑙 ∈ (0..^𝑁))) ∧ 𝐹:(1...𝑁)⟶dom 𝐸) ∧ 𝑘 = (𝑙 + 1)) → ((𝐸‘(𝐹𝑘)) = 𝑘 / 𝑥𝑃 ↔ (𝐸‘(𝐹‘(𝑙 + 1))) = (𝑙 + 1) / 𝑥𝑃))
8 simpl 483 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ0𝑙 ∈ (0..^𝑁)) → 𝑁 ∈ ℕ0)
98adantl 482 . . . . . . . . . . . . . . 15 (((𝑙 + 1) ∈ (1...𝑁) ∧ (𝑁 ∈ ℕ0𝑙 ∈ (0..^𝑁))) → 𝑁 ∈ ℕ0)
109anim1i 614 . . . . . . . . . . . . . 14 ((((𝑙 + 1) ∈ (1...𝑁) ∧ (𝑁 ∈ ℕ0𝑙 ∈ (0..^𝑁))) ∧ 𝐹:(1...𝑁)⟶dom 𝐸) → (𝑁 ∈ ℕ0𝐹:(1...𝑁)⟶dom 𝐸))
1110adantr 481 . . . . . . . . . . . . 13 (((((𝑙 + 1) ∈ (1...𝑁) ∧ (𝑁 ∈ ℕ0𝑙 ∈ (0..^𝑁))) ∧ 𝐹:(1...𝑁)⟶dom 𝐸) ∧ 𝑘 = (𝑙 + 1)) → (𝑁 ∈ ℕ0𝐹:(1...𝑁)⟶dom 𝐸))
12 simpr 485 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ0𝑙 ∈ (0..^𝑁)) → 𝑙 ∈ (0..^𝑁))
1312ad3antlr 727 . . . . . . . . . . . . 13 (((((𝑙 + 1) ∈ (1...𝑁) ∧ (𝑁 ∈ ℕ0𝑙 ∈ (0..^𝑁))) ∧ 𝐹:(1...𝑁)⟶dom 𝐸) ∧ 𝑘 = (𝑙 + 1)) → 𝑙 ∈ (0..^𝑁))
14 fargshift.g . . . . . . . . . . . . . . . 16 𝐺 = (𝑥 ∈ (0..^(♯‘𝐹)) ↦ (𝐹‘(𝑥 + 1)))
1514fargshiftfv 43476 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ0𝐹:(1...𝑁)⟶dom 𝐸) → (𝑙 ∈ (0..^𝑁) → (𝐺𝑙) = (𝐹‘(𝑙 + 1))))
1615imp 407 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ0𝐹:(1...𝑁)⟶dom 𝐸) ∧ 𝑙 ∈ (0..^𝑁)) → (𝐺𝑙) = (𝐹‘(𝑙 + 1)))
1716eqcomd 2824 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ0𝐹:(1...𝑁)⟶dom 𝐸) ∧ 𝑙 ∈ (0..^𝑁)) → (𝐹‘(𝑙 + 1)) = (𝐺𝑙))
1811, 13, 17syl2anc 584 . . . . . . . . . . . 12 (((((𝑙 + 1) ∈ (1...𝑁) ∧ (𝑁 ∈ ℕ0𝑙 ∈ (0..^𝑁))) ∧ 𝐹:(1...𝑁)⟶dom 𝐸) ∧ 𝑘 = (𝑙 + 1)) → (𝐹‘(𝑙 + 1)) = (𝐺𝑙))
1918fveqeq2d 6671 . . . . . . . . . . 11 (((((𝑙 + 1) ∈ (1...𝑁) ∧ (𝑁 ∈ ℕ0𝑙 ∈ (0..^𝑁))) ∧ 𝐹:(1...𝑁)⟶dom 𝐸) ∧ 𝑘 = (𝑙 + 1)) → ((𝐸‘(𝐹‘(𝑙 + 1))) = (𝑙 + 1) / 𝑥𝑃 ↔ (𝐸‘(𝐺𝑙)) = (𝑙 + 1) / 𝑥𝑃))
207, 19bitrd 280 . . . . . . . . . 10 (((((𝑙 + 1) ∈ (1...𝑁) ∧ (𝑁 ∈ ℕ0𝑙 ∈ (0..^𝑁))) ∧ 𝐹:(1...𝑁)⟶dom 𝐸) ∧ 𝑘 = (𝑙 + 1)) → ((𝐸‘(𝐹𝑘)) = 𝑘 / 𝑥𝑃 ↔ (𝐸‘(𝐺𝑙)) = (𝑙 + 1) / 𝑥𝑃))
213, 20rspcdv 3612 . . . . . . . . 9 ((((𝑙 + 1) ∈ (1...𝑁) ∧ (𝑁 ∈ ℕ0𝑙 ∈ (0..^𝑁))) ∧ 𝐹:(1...𝑁)⟶dom 𝐸) → (∀𝑘 ∈ (1...𝑁)(𝐸‘(𝐹𝑘)) = 𝑘 / 𝑥𝑃 → (𝐸‘(𝐺𝑙)) = (𝑙 + 1) / 𝑥𝑃))
2221ex 413 . . . . . . . 8 (((𝑙 + 1) ∈ (1...𝑁) ∧ (𝑁 ∈ ℕ0𝑙 ∈ (0..^𝑁))) → (𝐹:(1...𝑁)⟶dom 𝐸 → (∀𝑘 ∈ (1...𝑁)(𝐸‘(𝐹𝑘)) = 𝑘 / 𝑥𝑃 → (𝐸‘(𝐺𝑙)) = (𝑙 + 1) / 𝑥𝑃)))
2322com23 86 . . . . . . 7 (((𝑙 + 1) ∈ (1...𝑁) ∧ (𝑁 ∈ ℕ0𝑙 ∈ (0..^𝑁))) → (∀𝑘 ∈ (1...𝑁)(𝐸‘(𝐹𝑘)) = 𝑘 / 𝑥𝑃 → (𝐹:(1...𝑁)⟶dom 𝐸 → (𝐸‘(𝐺𝑙)) = (𝑙 + 1) / 𝑥𝑃)))
241, 23mpancom 684 . . . . . 6 ((𝑁 ∈ ℕ0𝑙 ∈ (0..^𝑁)) → (∀𝑘 ∈ (1...𝑁)(𝐸‘(𝐹𝑘)) = 𝑘 / 𝑥𝑃 → (𝐹:(1...𝑁)⟶dom 𝐸 → (𝐸‘(𝐺𝑙)) = (𝑙 + 1) / 𝑥𝑃)))
2524ex 413 . . . . 5 (𝑁 ∈ ℕ0 → (𝑙 ∈ (0..^𝑁) → (∀𝑘 ∈ (1...𝑁)(𝐸‘(𝐹𝑘)) = 𝑘 / 𝑥𝑃 → (𝐹:(1...𝑁)⟶dom 𝐸 → (𝐸‘(𝐺𝑙)) = (𝑙 + 1) / 𝑥𝑃))))
2625com24 95 . . . 4 (𝑁 ∈ ℕ0 → (𝐹:(1...𝑁)⟶dom 𝐸 → (∀𝑘 ∈ (1...𝑁)(𝐸‘(𝐹𝑘)) = 𝑘 / 𝑥𝑃 → (𝑙 ∈ (0..^𝑁) → (𝐸‘(𝐺𝑙)) = (𝑙 + 1) / 𝑥𝑃))))
2726imp31 418 . . 3 (((𝑁 ∈ ℕ0𝐹:(1...𝑁)⟶dom 𝐸) ∧ ∀𝑘 ∈ (1...𝑁)(𝐸‘(𝐹𝑘)) = 𝑘 / 𝑥𝑃) → (𝑙 ∈ (0..^𝑁) → (𝐸‘(𝐺𝑙)) = (𝑙 + 1) / 𝑥𝑃))
2827ralrimiv 3178 . 2 (((𝑁 ∈ ℕ0𝐹:(1...𝑁)⟶dom 𝐸) ∧ ∀𝑘 ∈ (1...𝑁)(𝐸‘(𝐹𝑘)) = 𝑘 / 𝑥𝑃) → ∀𝑙 ∈ (0..^𝑁)(𝐸‘(𝐺𝑙)) = (𝑙 + 1) / 𝑥𝑃)
2928ex 413 1 ((𝑁 ∈ ℕ0𝐹:(1...𝑁)⟶dom 𝐸) → (∀𝑘 ∈ (1...𝑁)(𝐸‘(𝐹𝑘)) = 𝑘 / 𝑥𝑃 → ∀𝑙 ∈ (0..^𝑁)(𝐸‘(𝐺𝑙)) = (𝑙 + 1) / 𝑥𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1528  wcel 2105  wral 3135  csb 3880  cmpt 5137  dom cdm 5548  wf 6344  cfv 6348  (class class class)co 7145  0cc0 10525  1c1 10526   + caddc 10528  0cn0 11885  ...cfz 12880  ..^cfzo 13021  chash 13678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12881  df-fzo 13022  df-hash 13679
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator