MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fbdmn0 Structured version   Visualization version   GIF version

Theorem fbdmn0 21551
Description: The domain of a filter base is nonempty. (Contributed by Mario Carneiro, 28-Nov-2013.) (Revised by Stefan O'Rear, 28-Jul-2015.)
Assertion
Ref Expression
fbdmn0 (𝐹 ∈ (fBas‘𝐵) → 𝐵 ≠ ∅)

Proof of Theorem fbdmn0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 0nelfb 21548 . 2 (𝐹 ∈ (fBas‘𝐵) → ¬ ∅ ∈ 𝐹)
2 fveq2 6150 . . . . . 6 (𝐵 = ∅ → (fBas‘𝐵) = (fBas‘∅))
32eleq2d 2684 . . . . 5 (𝐵 = ∅ → (𝐹 ∈ (fBas‘𝐵) ↔ 𝐹 ∈ (fBas‘∅)))
43biimpd 219 . . . 4 (𝐵 = ∅ → (𝐹 ∈ (fBas‘𝐵) → 𝐹 ∈ (fBas‘∅)))
5 fbasne0 21547 . . . . . 6 (𝐹 ∈ (fBas‘∅) → 𝐹 ≠ ∅)
6 n0 3909 . . . . . 6 (𝐹 ≠ ∅ ↔ ∃𝑥 𝑥𝐹)
75, 6sylib 208 . . . . 5 (𝐹 ∈ (fBas‘∅) → ∃𝑥 𝑥𝐹)
8 fbelss 21550 . . . . . . 7 ((𝐹 ∈ (fBas‘∅) ∧ 𝑥𝐹) → 𝑥 ⊆ ∅)
9 ss0 3948 . . . . . . 7 (𝑥 ⊆ ∅ → 𝑥 = ∅)
108, 9syl 17 . . . . . 6 ((𝐹 ∈ (fBas‘∅) ∧ 𝑥𝐹) → 𝑥 = ∅)
11 simpr 477 . . . . . 6 ((𝐹 ∈ (fBas‘∅) ∧ 𝑥𝐹) → 𝑥𝐹)
1210, 11eqeltrrd 2699 . . . . 5 ((𝐹 ∈ (fBas‘∅) ∧ 𝑥𝐹) → ∅ ∈ 𝐹)
137, 12exlimddv 1860 . . . 4 (𝐹 ∈ (fBas‘∅) → ∅ ∈ 𝐹)
144, 13syl6com 37 . . 3 (𝐹 ∈ (fBas‘𝐵) → (𝐵 = ∅ → ∅ ∈ 𝐹))
1514necon3bd 2804 . 2 (𝐹 ∈ (fBas‘𝐵) → (¬ ∅ ∈ 𝐹𝐵 ≠ ∅))
161, 15mpd 15 1 (𝐹 ∈ (fBas‘𝐵) → 𝐵 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1480  wex 1701  wcel 1987  wne 2790  wss 3556  c0 3893  cfv 5849  fBascfbas 19656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4743  ax-nul 4751  ax-pow 4805  ax-pr 4869
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-sbc 3419  df-csb 3516  df-dif 3559  df-un 3561  df-in 3563  df-ss 3570  df-nul 3894  df-if 4061  df-pw 4134  df-sn 4151  df-pr 4153  df-op 4157  df-uni 4405  df-br 4616  df-opab 4676  df-mpt 4677  df-id 4991  df-xp 5082  df-rel 5083  df-cnv 5084  df-co 5085  df-dm 5086  df-rn 5087  df-res 5088  df-ima 5089  df-iota 5812  df-fun 5851  df-fv 5857  df-fbas 19665
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator