MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fbelss Structured version   Visualization version   GIF version

Theorem fbelss 21547
Description: An element of the filter base is a subset of the base set. (Contributed by Stefan O'Rear, 28-Jul-2015.)
Assertion
Ref Expression
fbelss ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑋𝐹) → 𝑋𝐵)

Proof of Theorem fbelss
StepHypRef Expression
1 fbsspw 21546 . . 3 (𝐹 ∈ (fBas‘𝐵) → 𝐹 ⊆ 𝒫 𝐵)
21sselda 3583 . 2 ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑋𝐹) → 𝑋 ∈ 𝒫 𝐵)
32elpwid 4141 1 ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑋𝐹) → 𝑋𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  wcel 1987  wss 3555  𝒫 cpw 4130  cfv 5847  fBascfbas 19653
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fv 5855  df-fbas 19662
This theorem is referenced by:  fbdmn0  21548  filelss  21566  ssfg  21586  fgcl  21592  fbasrn  21598  fmfnfmlem4  21671  fmfnfm  21672  fmucnd  22006  cfilucfil  22274  fmcfil  22978
  Copyright terms: Public domain W3C validator