MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fbssfi Structured version   Visualization version   GIF version

Theorem fbssfi 21551
Description: A filter base contains subsets of its finite intersections. (Contributed by Mario Carneiro, 26-Nov-2013.) (Revised by Stefan O'Rear, 28-Jul-2015.)
Assertion
Ref Expression
fbssfi ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐴 ∈ (fi‘𝐹)) → ∃𝑥𝐹 𝑥𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝑋

Proof of Theorem fbssfi
Dummy variables 𝑡 𝑢 𝑣 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dffi2 8273 . . . 4 (𝐹 ∈ (fBas‘𝑋) → (fi‘𝐹) = {𝑧 ∣ (𝐹𝑧 ∧ ∀𝑢𝑧𝑣𝑧 (𝑢𝑣) ∈ 𝑧)})
2 inss1 3811 . . . . . . . . . . . . . . . . 17 (𝑢𝑣) ⊆ 𝑢
3 simp1r 1084 . . . . . . . . . . . . . . . . . 18 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑢 ∈ 𝒫 𝐹) ∧ (𝑦𝐹𝑦𝑢) ∧ (𝑧𝐹𝑧𝑣)) → 𝑢 ∈ 𝒫 𝐹)
43elpwid 4141 . . . . . . . . . . . . . . . . 17 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑢 ∈ 𝒫 𝐹) ∧ (𝑦𝐹𝑦𝑢) ∧ (𝑧𝐹𝑧𝑣)) → 𝑢 𝐹)
52, 4syl5ss 3594 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑢 ∈ 𝒫 𝐹) ∧ (𝑦𝐹𝑦𝑢) ∧ (𝑧𝐹𝑧𝑣)) → (𝑢𝑣) ⊆ 𝐹)
6 vex 3189 . . . . . . . . . . . . . . . . . 18 𝑢 ∈ V
76inex1 4759 . . . . . . . . . . . . . . . . 17 (𝑢𝑣) ∈ V
87elpw 4136 . . . . . . . . . . . . . . . 16 ((𝑢𝑣) ∈ 𝒫 𝐹 ↔ (𝑢𝑣) ⊆ 𝐹)
95, 8sylibr 224 . . . . . . . . . . . . . . 15 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑢 ∈ 𝒫 𝐹) ∧ (𝑦𝐹𝑦𝑢) ∧ (𝑧𝐹𝑧𝑣)) → (𝑢𝑣) ∈ 𝒫 𝐹)
10 simpl 473 . . . . . . . . . . . . . . . . 17 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑢 ∈ 𝒫 𝐹) → 𝐹 ∈ (fBas‘𝑋))
11 simpl 473 . . . . . . . . . . . . . . . . 17 ((𝑦𝐹𝑦𝑢) → 𝑦𝐹)
12 simpl 473 . . . . . . . . . . . . . . . . 17 ((𝑧𝐹𝑧𝑣) → 𝑧𝐹)
13 fbasssin 21550 . . . . . . . . . . . . . . . . 17 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑦𝐹𝑧𝐹) → ∃𝑥𝐹 𝑥 ⊆ (𝑦𝑧))
1410, 11, 12, 13syl3an 1365 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑢 ∈ 𝒫 𝐹) ∧ (𝑦𝐹𝑦𝑢) ∧ (𝑧𝐹𝑧𝑣)) → ∃𝑥𝐹 𝑥 ⊆ (𝑦𝑧))
15 ss2in 3818 . . . . . . . . . . . . . . . . . . . 20 ((𝑦𝑢𝑧𝑣) → (𝑦𝑧) ⊆ (𝑢𝑣))
1615ad2ant2l 781 . . . . . . . . . . . . . . . . . . 19 (((𝑦𝐹𝑦𝑢) ∧ (𝑧𝐹𝑧𝑣)) → (𝑦𝑧) ⊆ (𝑢𝑣))
17163adant1 1077 . . . . . . . . . . . . . . . . . 18 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑢 ∈ 𝒫 𝐹) ∧ (𝑦𝐹𝑦𝑢) ∧ (𝑧𝐹𝑧𝑣)) → (𝑦𝑧) ⊆ (𝑢𝑣))
18 sstr 3591 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ⊆ (𝑦𝑧) ∧ (𝑦𝑧) ⊆ (𝑢𝑣)) → 𝑥 ⊆ (𝑢𝑣))
1918expcom 451 . . . . . . . . . . . . . . . . . 18 ((𝑦𝑧) ⊆ (𝑢𝑣) → (𝑥 ⊆ (𝑦𝑧) → 𝑥 ⊆ (𝑢𝑣)))
2017, 19syl 17 . . . . . . . . . . . . . . . . 17 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑢 ∈ 𝒫 𝐹) ∧ (𝑦𝐹𝑦𝑢) ∧ (𝑧𝐹𝑧𝑣)) → (𝑥 ⊆ (𝑦𝑧) → 𝑥 ⊆ (𝑢𝑣)))
2120reximdv 3010 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑢 ∈ 𝒫 𝐹) ∧ (𝑦𝐹𝑦𝑢) ∧ (𝑧𝐹𝑧𝑣)) → (∃𝑥𝐹 𝑥 ⊆ (𝑦𝑧) → ∃𝑥𝐹 𝑥 ⊆ (𝑢𝑣)))
2214, 21mpd 15 . . . . . . . . . . . . . . 15 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑢 ∈ 𝒫 𝐹) ∧ (𝑦𝐹𝑦𝑢) ∧ (𝑧𝐹𝑧𝑣)) → ∃𝑥𝐹 𝑥 ⊆ (𝑢𝑣))
23 sseq2 3606 . . . . . . . . . . . . . . . . 17 (𝑡 = (𝑢𝑣) → (𝑥𝑡𝑥 ⊆ (𝑢𝑣)))
2423rexbidv 3045 . . . . . . . . . . . . . . . 16 (𝑡 = (𝑢𝑣) → (∃𝑥𝐹 𝑥𝑡 ↔ ∃𝑥𝐹 𝑥 ⊆ (𝑢𝑣)))
2524elrab 3346 . . . . . . . . . . . . . . 15 ((𝑢𝑣) ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} ↔ ((𝑢𝑣) ∈ 𝒫 𝐹 ∧ ∃𝑥𝐹 𝑥 ⊆ (𝑢𝑣)))
269, 22, 25sylanbrc 697 . . . . . . . . . . . . . 14 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑢 ∈ 𝒫 𝐹) ∧ (𝑦𝐹𝑦𝑢) ∧ (𝑧𝐹𝑧𝑣)) → (𝑢𝑣) ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡})
27263expa 1262 . . . . . . . . . . . . 13 ((((𝐹 ∈ (fBas‘𝑋) ∧ 𝑢 ∈ 𝒫 𝐹) ∧ (𝑦𝐹𝑦𝑢)) ∧ (𝑧𝐹𝑧𝑣)) → (𝑢𝑣) ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡})
2827rexlimdvaa 3025 . . . . . . . . . . . 12 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑢 ∈ 𝒫 𝐹) ∧ (𝑦𝐹𝑦𝑢)) → (∃𝑧𝐹 𝑧𝑣 → (𝑢𝑣) ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡}))
2928ralrimivw 2961 . . . . . . . . . . 11 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑢 ∈ 𝒫 𝐹) ∧ (𝑦𝐹𝑦𝑢)) → ∀𝑣 ∈ 𝒫 𝐹(∃𝑧𝐹 𝑧𝑣 → (𝑢𝑣) ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡}))
30 sseq2 3606 . . . . . . . . . . . . . 14 (𝑡 = 𝑣 → (𝑥𝑡𝑥𝑣))
3130rexbidv 3045 . . . . . . . . . . . . 13 (𝑡 = 𝑣 → (∃𝑥𝐹 𝑥𝑡 ↔ ∃𝑥𝐹 𝑥𝑣))
32 sseq1 3605 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → (𝑥𝑣𝑧𝑣))
3332cbvrexv 3160 . . . . . . . . . . . . 13 (∃𝑥𝐹 𝑥𝑣 ↔ ∃𝑧𝐹 𝑧𝑣)
3431, 33syl6bb 276 . . . . . . . . . . . 12 (𝑡 = 𝑣 → (∃𝑥𝐹 𝑥𝑡 ↔ ∃𝑧𝐹 𝑧𝑣))
3534ralrab 3350 . . . . . . . . . . 11 (∀𝑣 ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} (𝑢𝑣) ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} ↔ ∀𝑣 ∈ 𝒫 𝐹(∃𝑧𝐹 𝑧𝑣 → (𝑢𝑣) ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡}))
3629, 35sylibr 224 . . . . . . . . . 10 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑢 ∈ 𝒫 𝐹) ∧ (𝑦𝐹𝑦𝑢)) → ∀𝑣 ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} (𝑢𝑣) ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡})
3736rexlimdvaa 3025 . . . . . . . . 9 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑢 ∈ 𝒫 𝐹) → (∃𝑦𝐹 𝑦𝑢 → ∀𝑣 ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} (𝑢𝑣) ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡}))
3837ralrimiva 2960 . . . . . . . 8 (𝐹 ∈ (fBas‘𝑋) → ∀𝑢 ∈ 𝒫 𝐹(∃𝑦𝐹 𝑦𝑢 → ∀𝑣 ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} (𝑢𝑣) ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡}))
39 sseq2 3606 . . . . . . . . . . 11 (𝑡 = 𝑢 → (𝑥𝑡𝑥𝑢))
4039rexbidv 3045 . . . . . . . . . 10 (𝑡 = 𝑢 → (∃𝑥𝐹 𝑥𝑡 ↔ ∃𝑥𝐹 𝑥𝑢))
41 sseq1 3605 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝑥𝑢𝑦𝑢))
4241cbvrexv 3160 . . . . . . . . . 10 (∃𝑥𝐹 𝑥𝑢 ↔ ∃𝑦𝐹 𝑦𝑢)
4340, 42syl6bb 276 . . . . . . . . 9 (𝑡 = 𝑢 → (∃𝑥𝐹 𝑥𝑡 ↔ ∃𝑦𝐹 𝑦𝑢))
4443ralrab 3350 . . . . . . . 8 (∀𝑢 ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡}∀𝑣 ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} (𝑢𝑣) ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} ↔ ∀𝑢 ∈ 𝒫 𝐹(∃𝑦𝐹 𝑦𝑢 → ∀𝑣 ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} (𝑢𝑣) ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡}))
4538, 44sylibr 224 . . . . . . 7 (𝐹 ∈ (fBas‘𝑋) → ∀𝑢 ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡}∀𝑣 ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} (𝑢𝑣) ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡})
46 pwuni 4859 . . . . . . . 8 𝐹 ⊆ 𝒫 𝐹
47 ssid 3603 . . . . . . . . . 10 𝑡𝑡
48 sseq1 3605 . . . . . . . . . . 11 (𝑥 = 𝑡 → (𝑥𝑡𝑡𝑡))
4948rspcev 3295 . . . . . . . . . 10 ((𝑡𝐹𝑡𝑡) → ∃𝑥𝐹 𝑥𝑡)
5047, 49mpan2 706 . . . . . . . . 9 (𝑡𝐹 → ∃𝑥𝐹 𝑥𝑡)
5150rgen 2917 . . . . . . . 8 𝑡𝐹𝑥𝐹 𝑥𝑡
52 ssrab 3659 . . . . . . . 8 (𝐹 ⊆ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} ↔ (𝐹 ⊆ 𝒫 𝐹 ∧ ∀𝑡𝐹𝑥𝐹 𝑥𝑡))
5346, 51, 52mpbir2an 954 . . . . . . 7 𝐹 ⊆ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡}
5445, 53jctil 559 . . . . . 6 (𝐹 ∈ (fBas‘𝑋) → (𝐹 ⊆ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} ∧ ∀𝑢 ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡}∀𝑣 ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} (𝑢𝑣) ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡}))
55 uniexg 6908 . . . . . . 7 (𝐹 ∈ (fBas‘𝑋) → 𝐹 ∈ V)
56 pwexg 4810 . . . . . . 7 ( 𝐹 ∈ V → 𝒫 𝐹 ∈ V)
57 rabexg 4772 . . . . . . 7 (𝒫 𝐹 ∈ V → {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} ∈ V)
58 sseq2 3606 . . . . . . . . 9 (𝑧 = {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} → (𝐹𝑧𝐹 ⊆ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡}))
59 eleq2 2687 . . . . . . . . . . 11 (𝑧 = {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} → ((𝑢𝑣) ∈ 𝑧 ↔ (𝑢𝑣) ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡}))
6059raleqbi1dv 3135 . . . . . . . . . 10 (𝑧 = {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} → (∀𝑣𝑧 (𝑢𝑣) ∈ 𝑧 ↔ ∀𝑣 ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} (𝑢𝑣) ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡}))
6160raleqbi1dv 3135 . . . . . . . . 9 (𝑧 = {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} → (∀𝑢𝑧𝑣𝑧 (𝑢𝑣) ∈ 𝑧 ↔ ∀𝑢 ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡}∀𝑣 ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} (𝑢𝑣) ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡}))
6258, 61anbi12d 746 . . . . . . . 8 (𝑧 = {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} → ((𝐹𝑧 ∧ ∀𝑢𝑧𝑣𝑧 (𝑢𝑣) ∈ 𝑧) ↔ (𝐹 ⊆ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} ∧ ∀𝑢 ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡}∀𝑣 ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} (𝑢𝑣) ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡})))
6362elabg 3334 . . . . . . 7 ({𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} ∈ V → ({𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} ∈ {𝑧 ∣ (𝐹𝑧 ∧ ∀𝑢𝑧𝑣𝑧 (𝑢𝑣) ∈ 𝑧)} ↔ (𝐹 ⊆ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} ∧ ∀𝑢 ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡}∀𝑣 ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} (𝑢𝑣) ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡})))
6455, 56, 57, 634syl 19 . . . . . 6 (𝐹 ∈ (fBas‘𝑋) → ({𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} ∈ {𝑧 ∣ (𝐹𝑧 ∧ ∀𝑢𝑧𝑣𝑧 (𝑢𝑣) ∈ 𝑧)} ↔ (𝐹 ⊆ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} ∧ ∀𝑢 ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡}∀𝑣 ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} (𝑢𝑣) ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡})))
6554, 64mpbird 247 . . . . 5 (𝐹 ∈ (fBas‘𝑋) → {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} ∈ {𝑧 ∣ (𝐹𝑧 ∧ ∀𝑢𝑧𝑣𝑧 (𝑢𝑣) ∈ 𝑧)})
66 intss1 4457 . . . . 5 ({𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} ∈ {𝑧 ∣ (𝐹𝑧 ∧ ∀𝑢𝑧𝑣𝑧 (𝑢𝑣) ∈ 𝑧)} → {𝑧 ∣ (𝐹𝑧 ∧ ∀𝑢𝑧𝑣𝑧 (𝑢𝑣) ∈ 𝑧)} ⊆ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡})
6765, 66syl 17 . . . 4 (𝐹 ∈ (fBas‘𝑋) → {𝑧 ∣ (𝐹𝑧 ∧ ∀𝑢𝑧𝑣𝑧 (𝑢𝑣) ∈ 𝑧)} ⊆ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡})
681, 67eqsstrd 3618 . . 3 (𝐹 ∈ (fBas‘𝑋) → (fi‘𝐹) ⊆ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡})
6968sselda 3583 . 2 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐴 ∈ (fi‘𝐹)) → 𝐴 ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡})
70 sseq2 3606 . . . . 5 (𝑡 = 𝐴 → (𝑥𝑡𝑥𝐴))
7170rexbidv 3045 . . . 4 (𝑡 = 𝐴 → (∃𝑥𝐹 𝑥𝑡 ↔ ∃𝑥𝐹 𝑥𝐴))
7271elrab 3346 . . 3 (𝐴 ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} ↔ (𝐴 ∈ 𝒫 𝐹 ∧ ∃𝑥𝐹 𝑥𝐴))
7372simprbi 480 . 2 (𝐴 ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} → ∃𝑥𝐹 𝑥𝐴)
7469, 73syl 17 1 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐴 ∈ (fi‘𝐹)) → ∃𝑥𝐹 𝑥𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  {cab 2607  wral 2907  wrex 2908  {crab 2911  Vcvv 3186  cin 3554  wss 3555  𝒫 cpw 4130   cuni 4402   cint 4440  cfv 5847  ficfi 8260  fBascfbas 19653
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-en 7900  df-fin 7903  df-fi 8261  df-fbas 19662
This theorem is referenced by:  fbssint  21552  fbunfip  21583  fmfnfmlem1  21668  fmfnfmlem4  21671
  Copyright terms: Public domain W3C validator