MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fbunfip Structured version   Visualization version   GIF version

Theorem fbunfip 21583
Description: A helpful lemma for showing that certain sets generate filters. (Contributed by Jeff Hankins, 3-Sep-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
fbunfip ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑌)) → (¬ ∅ ∈ (fi‘(𝐹𝐺)) ↔ ∀𝑥𝐹𝑦𝐺 (𝑥𝑦) ≠ ∅))
Distinct variable groups:   𝑥,𝑦,𝐺   𝑥,𝐹,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦

Proof of Theorem fbunfip
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfiun 8280 . . . 4 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑌)) → (∅ ∈ (fi‘(𝐹𝐺)) ↔ (∅ ∈ (fi‘𝐹) ∨ ∅ ∈ (fi‘𝐺) ∨ ∃𝑥 ∈ (fi‘𝐹)∃𝑦 ∈ (fi‘𝐺)∅ = (𝑥𝑦))))
21notbid 308 . . 3 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑌)) → (¬ ∅ ∈ (fi‘(𝐹𝐺)) ↔ ¬ (∅ ∈ (fi‘𝐹) ∨ ∅ ∈ (fi‘𝐺) ∨ ∃𝑥 ∈ (fi‘𝐹)∃𝑦 ∈ (fi‘𝐺)∅ = (𝑥𝑦))))
3 3ioran 1054 . . . 4 (¬ (∅ ∈ (fi‘𝐹) ∨ ∅ ∈ (fi‘𝐺) ∨ ∃𝑥 ∈ (fi‘𝐹)∃𝑦 ∈ (fi‘𝐺)∅ = (𝑥𝑦)) ↔ (¬ ∅ ∈ (fi‘𝐹) ∧ ¬ ∅ ∈ (fi‘𝐺) ∧ ¬ ∃𝑥 ∈ (fi‘𝐹)∃𝑦 ∈ (fi‘𝐺)∅ = (𝑥𝑦)))
4 df-3an 1038 . . . 4 ((¬ ∅ ∈ (fi‘𝐹) ∧ ¬ ∅ ∈ (fi‘𝐺) ∧ ¬ ∃𝑥 ∈ (fi‘𝐹)∃𝑦 ∈ (fi‘𝐺)∅ = (𝑥𝑦)) ↔ ((¬ ∅ ∈ (fi‘𝐹) ∧ ¬ ∅ ∈ (fi‘𝐺)) ∧ ¬ ∃𝑥 ∈ (fi‘𝐹)∃𝑦 ∈ (fi‘𝐺)∅ = (𝑥𝑦)))
53, 4bitr2i 265 . . 3 (((¬ ∅ ∈ (fi‘𝐹) ∧ ¬ ∅ ∈ (fi‘𝐺)) ∧ ¬ ∃𝑥 ∈ (fi‘𝐹)∃𝑦 ∈ (fi‘𝐺)∅ = (𝑥𝑦)) ↔ ¬ (∅ ∈ (fi‘𝐹) ∨ ∅ ∈ (fi‘𝐺) ∨ ∃𝑥 ∈ (fi‘𝐹)∃𝑦 ∈ (fi‘𝐺)∅ = (𝑥𝑦)))
62, 5syl6bbr 278 . 2 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑌)) → (¬ ∅ ∈ (fi‘(𝐹𝐺)) ↔ ((¬ ∅ ∈ (fi‘𝐹) ∧ ¬ ∅ ∈ (fi‘𝐺)) ∧ ¬ ∃𝑥 ∈ (fi‘𝐹)∃𝑦 ∈ (fi‘𝐺)∅ = (𝑥𝑦))))
7 nesym 2846 . . . . . . 7 ((𝑥𝑦) ≠ ∅ ↔ ¬ ∅ = (𝑥𝑦))
87ralbii 2974 . . . . . 6 (∀𝑦 ∈ (fi‘𝐺)(𝑥𝑦) ≠ ∅ ↔ ∀𝑦 ∈ (fi‘𝐺) ¬ ∅ = (𝑥𝑦))
9 ralnex 2986 . . . . . 6 (∀𝑦 ∈ (fi‘𝐺) ¬ ∅ = (𝑥𝑦) ↔ ¬ ∃𝑦 ∈ (fi‘𝐺)∅ = (𝑥𝑦))
108, 9bitri 264 . . . . 5 (∀𝑦 ∈ (fi‘𝐺)(𝑥𝑦) ≠ ∅ ↔ ¬ ∃𝑦 ∈ (fi‘𝐺)∅ = (𝑥𝑦))
1110ralbii 2974 . . . 4 (∀𝑥 ∈ (fi‘𝐹)∀𝑦 ∈ (fi‘𝐺)(𝑥𝑦) ≠ ∅ ↔ ∀𝑥 ∈ (fi‘𝐹) ¬ ∃𝑦 ∈ (fi‘𝐺)∅ = (𝑥𝑦))
12 ralnex 2986 . . . 4 (∀𝑥 ∈ (fi‘𝐹) ¬ ∃𝑦 ∈ (fi‘𝐺)∅ = (𝑥𝑦) ↔ ¬ ∃𝑥 ∈ (fi‘𝐹)∃𝑦 ∈ (fi‘𝐺)∅ = (𝑥𝑦))
1311, 12bitri 264 . . 3 (∀𝑥 ∈ (fi‘𝐹)∀𝑦 ∈ (fi‘𝐺)(𝑥𝑦) ≠ ∅ ↔ ¬ ∃𝑥 ∈ (fi‘𝐹)∃𝑦 ∈ (fi‘𝐺)∅ = (𝑥𝑦))
14 fbasfip 21582 . . . . 5 (𝐹 ∈ (fBas‘𝑋) → ¬ ∅ ∈ (fi‘𝐹))
15 fbasfip 21582 . . . . 5 (𝐺 ∈ (fBas‘𝑌) → ¬ ∅ ∈ (fi‘𝐺))
1614, 15anim12i 589 . . . 4 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑌)) → (¬ ∅ ∈ (fi‘𝐹) ∧ ¬ ∅ ∈ (fi‘𝐺)))
1716biantrurd 529 . . 3 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑌)) → (¬ ∃𝑥 ∈ (fi‘𝐹)∃𝑦 ∈ (fi‘𝐺)∅ = (𝑥𝑦) ↔ ((¬ ∅ ∈ (fi‘𝐹) ∧ ¬ ∅ ∈ (fi‘𝐺)) ∧ ¬ ∃𝑥 ∈ (fi‘𝐹)∃𝑦 ∈ (fi‘𝐺)∅ = (𝑥𝑦))))
1813, 17syl5rbb 273 . 2 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑌)) → (((¬ ∅ ∈ (fi‘𝐹) ∧ ¬ ∅ ∈ (fi‘𝐺)) ∧ ¬ ∃𝑥 ∈ (fi‘𝐹)∃𝑦 ∈ (fi‘𝐺)∅ = (𝑥𝑦)) ↔ ∀𝑥 ∈ (fi‘𝐹)∀𝑦 ∈ (fi‘𝐺)(𝑥𝑦) ≠ ∅))
19 ssfii 8269 . . . . 5 (𝐹 ∈ (fBas‘𝑋) → 𝐹 ⊆ (fi‘𝐹))
20 ssralv 3645 . . . . 5 (𝐹 ⊆ (fi‘𝐹) → (∀𝑥 ∈ (fi‘𝐹)∀𝑦 ∈ (fi‘𝐺)(𝑥𝑦) ≠ ∅ → ∀𝑥𝐹𝑦 ∈ (fi‘𝐺)(𝑥𝑦) ≠ ∅))
2119, 20syl 17 . . . 4 (𝐹 ∈ (fBas‘𝑋) → (∀𝑥 ∈ (fi‘𝐹)∀𝑦 ∈ (fi‘𝐺)(𝑥𝑦) ≠ ∅ → ∀𝑥𝐹𝑦 ∈ (fi‘𝐺)(𝑥𝑦) ≠ ∅))
22 ssfii 8269 . . . . . 6 (𝐺 ∈ (fBas‘𝑌) → 𝐺 ⊆ (fi‘𝐺))
23 ssralv 3645 . . . . . 6 (𝐺 ⊆ (fi‘𝐺) → (∀𝑦 ∈ (fi‘𝐺)(𝑥𝑦) ≠ ∅ → ∀𝑦𝐺 (𝑥𝑦) ≠ ∅))
2422, 23syl 17 . . . . 5 (𝐺 ∈ (fBas‘𝑌) → (∀𝑦 ∈ (fi‘𝐺)(𝑥𝑦) ≠ ∅ → ∀𝑦𝐺 (𝑥𝑦) ≠ ∅))
2524ralimdv 2957 . . . 4 (𝐺 ∈ (fBas‘𝑌) → (∀𝑥𝐹𝑦 ∈ (fi‘𝐺)(𝑥𝑦) ≠ ∅ → ∀𝑥𝐹𝑦𝐺 (𝑥𝑦) ≠ ∅))
2621, 25sylan9 688 . . 3 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑌)) → (∀𝑥 ∈ (fi‘𝐹)∀𝑦 ∈ (fi‘𝐺)(𝑥𝑦) ≠ ∅ → ∀𝑥𝐹𝑦𝐺 (𝑥𝑦) ≠ ∅))
27 ineq1 3785 . . . . . 6 (𝑥 = 𝑧 → (𝑥𝑦) = (𝑧𝑦))
2827neeq1d 2849 . . . . 5 (𝑥 = 𝑧 → ((𝑥𝑦) ≠ ∅ ↔ (𝑧𝑦) ≠ ∅))
29 ineq2 3786 . . . . . 6 (𝑦 = 𝑤 → (𝑧𝑦) = (𝑧𝑤))
3029neeq1d 2849 . . . . 5 (𝑦 = 𝑤 → ((𝑧𝑦) ≠ ∅ ↔ (𝑧𝑤) ≠ ∅))
3128, 30cbvral2v 3167 . . . 4 (∀𝑥𝐹𝑦𝐺 (𝑥𝑦) ≠ ∅ ↔ ∀𝑧𝐹𝑤𝐺 (𝑧𝑤) ≠ ∅)
32 fbssfi 21551 . . . . . . 7 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑥 ∈ (fi‘𝐹)) → ∃𝑧𝐹 𝑧𝑥)
33 fbssfi 21551 . . . . . . 7 ((𝐺 ∈ (fBas‘𝑌) ∧ 𝑦 ∈ (fi‘𝐺)) → ∃𝑤𝐺 𝑤𝑦)
34 r19.29 3065 . . . . . . . . . 10 ((∀𝑧𝐹𝑤𝐺 (𝑧𝑤) ≠ ∅ ∧ ∃𝑧𝐹 𝑧𝑥) → ∃𝑧𝐹 (∀𝑤𝐺 (𝑧𝑤) ≠ ∅ ∧ 𝑧𝑥))
35 r19.29 3065 . . . . . . . . . . . . 13 ((∀𝑤𝐺 (𝑧𝑤) ≠ ∅ ∧ ∃𝑤𝐺 𝑤𝑦) → ∃𝑤𝐺 ((𝑧𝑤) ≠ ∅ ∧ 𝑤𝑦))
36 ss2in 3818 . . . . . . . . . . . . . . . . . . 19 ((𝑧𝑥𝑤𝑦) → (𝑧𝑤) ⊆ (𝑥𝑦))
37 sseq2 3606 . . . . . . . . . . . . . . . . . . . 20 ((𝑥𝑦) = ∅ → ((𝑧𝑤) ⊆ (𝑥𝑦) ↔ (𝑧𝑤) ⊆ ∅))
38 ss0 3946 . . . . . . . . . . . . . . . . . . . 20 ((𝑧𝑤) ⊆ ∅ → (𝑧𝑤) = ∅)
3937, 38syl6bi 243 . . . . . . . . . . . . . . . . . . 19 ((𝑥𝑦) = ∅ → ((𝑧𝑤) ⊆ (𝑥𝑦) → (𝑧𝑤) = ∅))
4036, 39syl5com 31 . . . . . . . . . . . . . . . . . 18 ((𝑧𝑥𝑤𝑦) → ((𝑥𝑦) = ∅ → (𝑧𝑤) = ∅))
4140necon3d 2811 . . . . . . . . . . . . . . . . 17 ((𝑧𝑥𝑤𝑦) → ((𝑧𝑤) ≠ ∅ → (𝑥𝑦) ≠ ∅))
4241ex 450 . . . . . . . . . . . . . . . 16 (𝑧𝑥 → (𝑤𝑦 → ((𝑧𝑤) ≠ ∅ → (𝑥𝑦) ≠ ∅)))
4342com13 88 . . . . . . . . . . . . . . 15 ((𝑧𝑤) ≠ ∅ → (𝑤𝑦 → (𝑧𝑥 → (𝑥𝑦) ≠ ∅)))
4443imp 445 . . . . . . . . . . . . . 14 (((𝑧𝑤) ≠ ∅ ∧ 𝑤𝑦) → (𝑧𝑥 → (𝑥𝑦) ≠ ∅))
4544rexlimivw 3022 . . . . . . . . . . . . 13 (∃𝑤𝐺 ((𝑧𝑤) ≠ ∅ ∧ 𝑤𝑦) → (𝑧𝑥 → (𝑥𝑦) ≠ ∅))
4635, 45syl 17 . . . . . . . . . . . 12 ((∀𝑤𝐺 (𝑧𝑤) ≠ ∅ ∧ ∃𝑤𝐺 𝑤𝑦) → (𝑧𝑥 → (𝑥𝑦) ≠ ∅))
4746impancom 456 . . . . . . . . . . 11 ((∀𝑤𝐺 (𝑧𝑤) ≠ ∅ ∧ 𝑧𝑥) → (∃𝑤𝐺 𝑤𝑦 → (𝑥𝑦) ≠ ∅))
4847rexlimivw 3022 . . . . . . . . . 10 (∃𝑧𝐹 (∀𝑤𝐺 (𝑧𝑤) ≠ ∅ ∧ 𝑧𝑥) → (∃𝑤𝐺 𝑤𝑦 → (𝑥𝑦) ≠ ∅))
4934, 48syl 17 . . . . . . . . 9 ((∀𝑧𝐹𝑤𝐺 (𝑧𝑤) ≠ ∅ ∧ ∃𝑧𝐹 𝑧𝑥) → (∃𝑤𝐺 𝑤𝑦 → (𝑥𝑦) ≠ ∅))
5049expimpd 628 . . . . . . . 8 (∀𝑧𝐹𝑤𝐺 (𝑧𝑤) ≠ ∅ → ((∃𝑧𝐹 𝑧𝑥 ∧ ∃𝑤𝐺 𝑤𝑦) → (𝑥𝑦) ≠ ∅))
5150com12 32 . . . . . . 7 ((∃𝑧𝐹 𝑧𝑥 ∧ ∃𝑤𝐺 𝑤𝑦) → (∀𝑧𝐹𝑤𝐺 (𝑧𝑤) ≠ ∅ → (𝑥𝑦) ≠ ∅))
5232, 33, 51syl2an 494 . . . . . 6 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑥 ∈ (fi‘𝐹)) ∧ (𝐺 ∈ (fBas‘𝑌) ∧ 𝑦 ∈ (fi‘𝐺))) → (∀𝑧𝐹𝑤𝐺 (𝑧𝑤) ≠ ∅ → (𝑥𝑦) ≠ ∅))
5352an4s 868 . . . . 5 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑌)) ∧ (𝑥 ∈ (fi‘𝐹) ∧ 𝑦 ∈ (fi‘𝐺))) → (∀𝑧𝐹𝑤𝐺 (𝑧𝑤) ≠ ∅ → (𝑥𝑦) ≠ ∅))
5453ralrimdvva 2968 . . . 4 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑌)) → (∀𝑧𝐹𝑤𝐺 (𝑧𝑤) ≠ ∅ → ∀𝑥 ∈ (fi‘𝐹)∀𝑦 ∈ (fi‘𝐺)(𝑥𝑦) ≠ ∅))
5531, 54syl5bi 232 . . 3 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑌)) → (∀𝑥𝐹𝑦𝐺 (𝑥𝑦) ≠ ∅ → ∀𝑥 ∈ (fi‘𝐹)∀𝑦 ∈ (fi‘𝐺)(𝑥𝑦) ≠ ∅))
5626, 55impbid 202 . 2 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑌)) → (∀𝑥 ∈ (fi‘𝐹)∀𝑦 ∈ (fi‘𝐺)(𝑥𝑦) ≠ ∅ ↔ ∀𝑥𝐹𝑦𝐺 (𝑥𝑦) ≠ ∅))
576, 18, 563bitrd 294 1 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑌)) → (¬ ∅ ∈ (fi‘(𝐹𝐺)) ↔ ∀𝑥𝐹𝑦𝐺 (𝑥𝑦) ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3o 1035  w3a 1036   = wceq 1480  wcel 1987  wne 2790  wral 2907  wrex 2908  cun 3553  cin 3554  wss 3555  c0 3891  cfv 5847  ficfi 8260  fBascfbas 19653
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-en 7900  df-fin 7903  df-fi 8261  df-fbas 19662
This theorem is referenced by:  isufil2  21622  ufileu  21633  filufint  21634  fmfnfm  21672  hausflim  21695  flimclslem  21698  fclsfnflim  21741  flimfnfcls  21742
  Copyright terms: Public domain W3C validator