MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fcfelbas Structured version   Visualization version   GIF version

Theorem fcfelbas 21887
Description: A cluster point of a function is in the base set of the topology. (Contributed by Jeff Hankins, 26-Nov-2009.) (Revised by Stefan O'Rear, 9-Aug-2015.)
Assertion
Ref Expression
fcfelbas (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴 ∈ ((𝐽 fClusf 𝐿)‘𝐹)) → 𝐴𝑋)

Proof of Theorem fcfelbas
StepHypRef Expression
1 fcfval 21884 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝐽 fClusf 𝐿)‘𝐹) = (𝐽 fClus ((𝑋 FilMap 𝐹)‘𝐿)))
21eleq2d 2716 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ ((𝐽 fClusf 𝐿)‘𝐹) ↔ 𝐴 ∈ (𝐽 fClus ((𝑋 FilMap 𝐹)‘𝐿))))
3 eqid 2651 . . . . 5 𝐽 = 𝐽
43fclselbas 21867 . . . 4 (𝐴 ∈ (𝐽 fClus ((𝑋 FilMap 𝐹)‘𝐿)) → 𝐴 𝐽)
52, 4syl6bi 243 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ ((𝐽 fClusf 𝐿)‘𝐹) → 𝐴 𝐽))
65imp 444 . 2 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴 ∈ ((𝐽 fClusf 𝐿)‘𝐹)) → 𝐴 𝐽)
7 simpl1 1084 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴 ∈ ((𝐽 fClusf 𝐿)‘𝐹)) → 𝐽 ∈ (TopOn‘𝑋))
8 toponuni 20767 . . 3 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
97, 8syl 17 . 2 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴 ∈ ((𝐽 fClusf 𝐿)‘𝐹)) → 𝑋 = 𝐽)
106, 9eleqtrrd 2733 1 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴 ∈ ((𝐽 fClusf 𝐿)‘𝐹)) → 𝐴𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1054   = wceq 1523  wcel 2030   cuni 4468  wf 5922  cfv 5926  (class class class)co 6690  TopOnctopon 20763  Filcfil 21696   FilMap cfm 21784   fClus cfcls 21787   fClusf cfcf 21788
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-map 7901  df-fbas 19791  df-top 20747  df-topon 20764  df-cld 20871  df-ntr 20872  df-cls 20873  df-fil 21697  df-fcls 21792  df-fcf 21793
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator