MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fclsbas Structured version   Visualization version   GIF version

Theorem fclsbas 21735
Description: Cluster points in terms of filter bases. (Contributed by Jeff Hankins, 13-Nov-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.)
Hypothesis
Ref Expression
fclsbas.f 𝐹 = (𝑋filGen𝐵)
Assertion
Ref Expression
fclsbas ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → (𝐴 ∈ (𝐽 fClus 𝐹) ↔ (𝐴𝑋 ∧ ∀𝑜𝐽 (𝐴𝑜 → ∀𝑠𝐵 (𝑜𝑠) ≠ ∅))))
Distinct variable groups:   𝐴,𝑜   𝑜,𝑠,𝐵   𝑜,𝐹   𝑜,𝐽   𝑜,𝑋
Allowed substitution hints:   𝐴(𝑠)   𝐹(𝑠)   𝐽(𝑠)   𝑋(𝑠)

Proof of Theorem fclsbas
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 fclsbas.f . . . 4 𝐹 = (𝑋filGen𝐵)
2 fgcl 21592 . . . . 5 (𝐵 ∈ (fBas‘𝑋) → (𝑋filGen𝐵) ∈ (Fil‘𝑋))
32adantl 482 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → (𝑋filGen𝐵) ∈ (Fil‘𝑋))
41, 3syl5eqel 2702 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → 𝐹 ∈ (Fil‘𝑋))
5 fclsopn 21728 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fClus 𝐹) ↔ (𝐴𝑋 ∧ ∀𝑜𝐽 (𝐴𝑜 → ∀𝑡𝐹 (𝑜𝑡) ≠ ∅))))
64, 5syldan 487 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → (𝐴 ∈ (𝐽 fClus 𝐹) ↔ (𝐴𝑋 ∧ ∀𝑜𝐽 (𝐴𝑜 → ∀𝑡𝐹 (𝑜𝑡) ≠ ∅))))
7 ssfg 21586 . . . . . . . . . . 11 (𝐵 ∈ (fBas‘𝑋) → 𝐵 ⊆ (𝑋filGen𝐵))
87ad3antlr 766 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) ∧ (𝑜𝐽𝐴𝑜)) → 𝐵 ⊆ (𝑋filGen𝐵))
98, 1syl6sseqr 3631 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) ∧ (𝑜𝐽𝐴𝑜)) → 𝐵𝐹)
10 ssralv 3645 . . . . . . . . 9 (𝐵𝐹 → (∀𝑡𝐹 (𝑜𝑡) ≠ ∅ → ∀𝑡𝐵 (𝑜𝑡) ≠ ∅))
119, 10syl 17 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) ∧ (𝑜𝐽𝐴𝑜)) → (∀𝑡𝐹 (𝑜𝑡) ≠ ∅ → ∀𝑡𝐵 (𝑜𝑡) ≠ ∅))
12 ineq2 3786 . . . . . . . . . 10 (𝑡 = 𝑠 → (𝑜𝑡) = (𝑜𝑠))
1312neeq1d 2849 . . . . . . . . 9 (𝑡 = 𝑠 → ((𝑜𝑡) ≠ ∅ ↔ (𝑜𝑠) ≠ ∅))
1413cbvralv 3159 . . . . . . . 8 (∀𝑡𝐵 (𝑜𝑡) ≠ ∅ ↔ ∀𝑠𝐵 (𝑜𝑠) ≠ ∅)
1511, 14syl6ib 241 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) ∧ (𝑜𝐽𝐴𝑜)) → (∀𝑡𝐹 (𝑜𝑡) ≠ ∅ → ∀𝑠𝐵 (𝑜𝑠) ≠ ∅))
161eleq2i 2690 . . . . . . . . . . 11 (𝑡𝐹𝑡 ∈ (𝑋filGen𝐵))
17 elfg 21585 . . . . . . . . . . . 12 (𝐵 ∈ (fBas‘𝑋) → (𝑡 ∈ (𝑋filGen𝐵) ↔ (𝑡𝑋 ∧ ∃𝑠𝐵 𝑠𝑡)))
1817ad3antlr 766 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) ∧ (𝑜𝐽𝐴𝑜)) → (𝑡 ∈ (𝑋filGen𝐵) ↔ (𝑡𝑋 ∧ ∃𝑠𝐵 𝑠𝑡)))
1916, 18syl5bb 272 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) ∧ (𝑜𝐽𝐴𝑜)) → (𝑡𝐹 ↔ (𝑡𝑋 ∧ ∃𝑠𝐵 𝑠𝑡)))
2019simplbda 653 . . . . . . . . 9 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) ∧ (𝑜𝐽𝐴𝑜)) ∧ 𝑡𝐹) → ∃𝑠𝐵 𝑠𝑡)
21 r19.29r 3066 . . . . . . . . . . 11 ((∃𝑠𝐵 𝑠𝑡 ∧ ∀𝑠𝐵 (𝑜𝑠) ≠ ∅) → ∃𝑠𝐵 (𝑠𝑡 ∧ (𝑜𝑠) ≠ ∅))
22 sslin 3817 . . . . . . . . . . . . 13 (𝑠𝑡 → (𝑜𝑠) ⊆ (𝑜𝑡))
23 ssn0 3948 . . . . . . . . . . . . 13 (((𝑜𝑠) ⊆ (𝑜𝑡) ∧ (𝑜𝑠) ≠ ∅) → (𝑜𝑡) ≠ ∅)
2422, 23sylan 488 . . . . . . . . . . . 12 ((𝑠𝑡 ∧ (𝑜𝑠) ≠ ∅) → (𝑜𝑡) ≠ ∅)
2524rexlimivw 3022 . . . . . . . . . . 11 (∃𝑠𝐵 (𝑠𝑡 ∧ (𝑜𝑠) ≠ ∅) → (𝑜𝑡) ≠ ∅)
2621, 25syl 17 . . . . . . . . . 10 ((∃𝑠𝐵 𝑠𝑡 ∧ ∀𝑠𝐵 (𝑜𝑠) ≠ ∅) → (𝑜𝑡) ≠ ∅)
2726ex 450 . . . . . . . . 9 (∃𝑠𝐵 𝑠𝑡 → (∀𝑠𝐵 (𝑜𝑠) ≠ ∅ → (𝑜𝑡) ≠ ∅))
2820, 27syl 17 . . . . . . . 8 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) ∧ (𝑜𝐽𝐴𝑜)) ∧ 𝑡𝐹) → (∀𝑠𝐵 (𝑜𝑠) ≠ ∅ → (𝑜𝑡) ≠ ∅))
2928ralrimdva 2963 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) ∧ (𝑜𝐽𝐴𝑜)) → (∀𝑠𝐵 (𝑜𝑠) ≠ ∅ → ∀𝑡𝐹 (𝑜𝑡) ≠ ∅))
3015, 29impbid 202 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) ∧ (𝑜𝐽𝐴𝑜)) → (∀𝑡𝐹 (𝑜𝑡) ≠ ∅ ↔ ∀𝑠𝐵 (𝑜𝑠) ≠ ∅))
3130anassrs 679 . . . . 5 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑜𝐽) ∧ 𝐴𝑜) → (∀𝑡𝐹 (𝑜𝑡) ≠ ∅ ↔ ∀𝑠𝐵 (𝑜𝑠) ≠ ∅))
3231pm5.74da 722 . . . 4 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑜𝐽) → ((𝐴𝑜 → ∀𝑡𝐹 (𝑜𝑡) ≠ ∅) ↔ (𝐴𝑜 → ∀𝑠𝐵 (𝑜𝑠) ≠ ∅)))
3332ralbidva 2979 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) → (∀𝑜𝐽 (𝐴𝑜 → ∀𝑡𝐹 (𝑜𝑡) ≠ ∅) ↔ ∀𝑜𝐽 (𝐴𝑜 → ∀𝑠𝐵 (𝑜𝑠) ≠ ∅)))
3433pm5.32da 672 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → ((𝐴𝑋 ∧ ∀𝑜𝐽 (𝐴𝑜 → ∀𝑡𝐹 (𝑜𝑡) ≠ ∅)) ↔ (𝐴𝑋 ∧ ∀𝑜𝐽 (𝐴𝑜 → ∀𝑠𝐵 (𝑜𝑠) ≠ ∅))))
356, 34bitrd 268 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → (𝐴 ∈ (𝐽 fClus 𝐹) ↔ (𝐴𝑋 ∧ ∀𝑜𝐽 (𝐴𝑜 → ∀𝑠𝐵 (𝑜𝑠) ≠ ∅))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wne 2790  wral 2907  wrex 2908  cin 3554  wss 3555  c0 3891  cfv 5847  (class class class)co 6604  fBascfbas 19653  filGencfg 19654  TopOnctopon 20618  Filcfil 21559   fClus cfcls 21650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-iin 4488  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-fbas 19662  df-fg 19663  df-top 20621  df-topon 20623  df-cld 20733  df-ntr 20734  df-cls 20735  df-fil 21560  df-fcls 21655
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator