MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fclsneii Structured version   Visualization version   GIF version

Theorem fclsneii 22619
Description: A neighborhood of a cluster point of a filter intersects any element of that filter. (Contributed by Jeff Hankins, 11-Nov-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.)
Assertion
Ref Expression
fclsneii ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑆𝐹) → (𝑁𝑆) ≠ ∅)

Proof of Theorem fclsneii
StepHypRef Expression
1 simp1 1132 . . . . 5 ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑆𝐹) → 𝐴 ∈ (𝐽 fClus 𝐹))
2 fclstop 22613 . . . . 5 (𝐴 ∈ (𝐽 fClus 𝐹) → 𝐽 ∈ Top)
31, 2syl 17 . . . 4 ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑆𝐹) → 𝐽 ∈ Top)
4 simp2 1133 . . . . 5 ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑆𝐹) → 𝑁 ∈ ((nei‘𝐽)‘{𝐴}))
5 eqid 2821 . . . . . 6 𝐽 = 𝐽
65neii1 21708 . . . . 5 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴})) → 𝑁 𝐽)
73, 4, 6syl2anc 586 . . . 4 ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑆𝐹) → 𝑁 𝐽)
85ntrss2 21659 . . . 4 ((𝐽 ∈ Top ∧ 𝑁 𝐽) → ((int‘𝐽)‘𝑁) ⊆ 𝑁)
93, 7, 8syl2anc 586 . . 3 ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑆𝐹) → ((int‘𝐽)‘𝑁) ⊆ 𝑁)
109ssrind 4211 . 2 ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑆𝐹) → (((int‘𝐽)‘𝑁) ∩ 𝑆) ⊆ (𝑁𝑆))
115ntropn 21651 . . . 4 ((𝐽 ∈ Top ∧ 𝑁 𝐽) → ((int‘𝐽)‘𝑁) ∈ 𝐽)
123, 7, 11syl2anc 586 . . 3 ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑆𝐹) → ((int‘𝐽)‘𝑁) ∈ 𝐽)
135fclselbas 22618 . . . . . . . 8 (𝐴 ∈ (𝐽 fClus 𝐹) → 𝐴 𝐽)
141, 13syl 17 . . . . . . 7 ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑆𝐹) → 𝐴 𝐽)
1514snssd 4735 . . . . . 6 ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑆𝐹) → {𝐴} ⊆ 𝐽)
165neiint 21706 . . . . . 6 ((𝐽 ∈ Top ∧ {𝐴} ⊆ 𝐽𝑁 𝐽) → (𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ↔ {𝐴} ⊆ ((int‘𝐽)‘𝑁)))
173, 15, 7, 16syl3anc 1367 . . . . 5 ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑆𝐹) → (𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ↔ {𝐴} ⊆ ((int‘𝐽)‘𝑁)))
184, 17mpbid 234 . . . 4 ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑆𝐹) → {𝐴} ⊆ ((int‘𝐽)‘𝑁))
19 snssg 4710 . . . . 5 (𝐴 𝐽 → (𝐴 ∈ ((int‘𝐽)‘𝑁) ↔ {𝐴} ⊆ ((int‘𝐽)‘𝑁)))
2014, 19syl 17 . . . 4 ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑆𝐹) → (𝐴 ∈ ((int‘𝐽)‘𝑁) ↔ {𝐴} ⊆ ((int‘𝐽)‘𝑁)))
2118, 20mpbird 259 . . 3 ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑆𝐹) → 𝐴 ∈ ((int‘𝐽)‘𝑁))
22 simp3 1134 . . 3 ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑆𝐹) → 𝑆𝐹)
23 fclsopni 22617 . . 3 ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ (((int‘𝐽)‘𝑁) ∈ 𝐽𝐴 ∈ ((int‘𝐽)‘𝑁) ∧ 𝑆𝐹)) → (((int‘𝐽)‘𝑁) ∩ 𝑆) ≠ ∅)
241, 12, 21, 22, 23syl13anc 1368 . 2 ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑆𝐹) → (((int‘𝐽)‘𝑁) ∩ 𝑆) ≠ ∅)
25 ssn0 4353 . 2 (((((int‘𝐽)‘𝑁) ∩ 𝑆) ⊆ (𝑁𝑆) ∧ (((int‘𝐽)‘𝑁) ∩ 𝑆) ≠ ∅) → (𝑁𝑆) ≠ ∅)
2610, 24, 25syl2anc 586 1 ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑆𝐹) → (𝑁𝑆) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  w3a 1083  wcel 2110  wne 3016  cin 3934  wss 3935  c0 4290  {csn 4560   cuni 4831  cfv 6349  (class class class)co 7150  Topctop 21495  intcnt 21619  neicnei 21699   fClus cfcls 22538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-iin 4914  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-ov 7153  df-oprab 7154  df-mpo 7155  df-fbas 20536  df-top 21496  df-topon 21513  df-cld 21621  df-ntr 21622  df-cls 21623  df-nei 21700  df-fil 22448  df-fcls 22543
This theorem is referenced by:  fclsnei  22621  fclsfnflim  22629
  Copyright terms: Public domain W3C validator