MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fclsopni Structured version   Visualization version   GIF version

Theorem fclsopni 22551
Description: An open neighborhood of a cluster point of a filter intersects any element of that filter. (Contributed by Mario Carneiro, 11-Apr-2015.) (Revised by Stefan O'Rear, 8-Aug-2015.)
Assertion
Ref Expression
fclsopni ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ (𝑈𝐽𝐴𝑈𝑆𝐹)) → (𝑈𝑆) ≠ ∅)

Proof of Theorem fclsopni
Dummy variables 𝑜 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2818 . . . . . . . 8 𝐽 = 𝐽
21fclsfil 22546 . . . . . . 7 (𝐴 ∈ (𝐽 fClus 𝐹) → 𝐹 ∈ (Fil‘ 𝐽))
3 fclstopon 22548 . . . . . . 7 (𝐴 ∈ (𝐽 fClus 𝐹) → (𝐽 ∈ (TopOn‘ 𝐽) ↔ 𝐹 ∈ (Fil‘ 𝐽)))
42, 3mpbird 258 . . . . . 6 (𝐴 ∈ (𝐽 fClus 𝐹) → 𝐽 ∈ (TopOn‘ 𝐽))
5 fclsopn 22550 . . . . . 6 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝐹 ∈ (Fil‘ 𝐽)) → (𝐴 ∈ (𝐽 fClus 𝐹) ↔ (𝐴 𝐽 ∧ ∀𝑜𝐽 (𝐴𝑜 → ∀𝑠𝐹 (𝑜𝑠) ≠ ∅))))
64, 2, 5syl2anc 584 . . . . 5 (𝐴 ∈ (𝐽 fClus 𝐹) → (𝐴 ∈ (𝐽 fClus 𝐹) ↔ (𝐴 𝐽 ∧ ∀𝑜𝐽 (𝐴𝑜 → ∀𝑠𝐹 (𝑜𝑠) ≠ ∅))))
76ibi 268 . . . 4 (𝐴 ∈ (𝐽 fClus 𝐹) → (𝐴 𝐽 ∧ ∀𝑜𝐽 (𝐴𝑜 → ∀𝑠𝐹 (𝑜𝑠) ≠ ∅)))
8 eleq2 2898 . . . . . 6 (𝑜 = 𝑈 → (𝐴𝑜𝐴𝑈))
9 ineq1 4178 . . . . . . . 8 (𝑜 = 𝑈 → (𝑜𝑠) = (𝑈𝑠))
109neeq1d 3072 . . . . . . 7 (𝑜 = 𝑈 → ((𝑜𝑠) ≠ ∅ ↔ (𝑈𝑠) ≠ ∅))
1110ralbidv 3194 . . . . . 6 (𝑜 = 𝑈 → (∀𝑠𝐹 (𝑜𝑠) ≠ ∅ ↔ ∀𝑠𝐹 (𝑈𝑠) ≠ ∅))
128, 11imbi12d 346 . . . . 5 (𝑜 = 𝑈 → ((𝐴𝑜 → ∀𝑠𝐹 (𝑜𝑠) ≠ ∅) ↔ (𝐴𝑈 → ∀𝑠𝐹 (𝑈𝑠) ≠ ∅)))
1312rspccv 3617 . . . 4 (∀𝑜𝐽 (𝐴𝑜 → ∀𝑠𝐹 (𝑜𝑠) ≠ ∅) → (𝑈𝐽 → (𝐴𝑈 → ∀𝑠𝐹 (𝑈𝑠) ≠ ∅)))
147, 13simpl2im 504 . . 3 (𝐴 ∈ (𝐽 fClus 𝐹) → (𝑈𝐽 → (𝐴𝑈 → ∀𝑠𝐹 (𝑈𝑠) ≠ ∅)))
15 ineq2 4180 . . . . 5 (𝑠 = 𝑆 → (𝑈𝑠) = (𝑈𝑆))
1615neeq1d 3072 . . . 4 (𝑠 = 𝑆 → ((𝑈𝑠) ≠ ∅ ↔ (𝑈𝑆) ≠ ∅))
1716rspccv 3617 . . 3 (∀𝑠𝐹 (𝑈𝑠) ≠ ∅ → (𝑆𝐹 → (𝑈𝑆) ≠ ∅))
1814, 17syl8 76 . 2 (𝐴 ∈ (𝐽 fClus 𝐹) → (𝑈𝐽 → (𝐴𝑈 → (𝑆𝐹 → (𝑈𝑆) ≠ ∅))))
19183imp2 1341 1 ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ (𝑈𝐽𝐴𝑈𝑆𝐹)) → (𝑈𝑆) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1079   = wceq 1528  wcel 2105  wne 3013  wral 3135  cin 3932  c0 4288   cuni 4830  cfv 6348  (class class class)co 7145  TopOnctopon 21446  Filcfil 22381   fClus cfcls 22472
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-ov 7148  df-oprab 7149  df-mpo 7150  df-fbas 20470  df-top 21430  df-topon 21447  df-cld 21555  df-ntr 21556  df-cls 21557  df-fil 22382  df-fcls 22477
This theorem is referenced by:  fclsneii  22553  supnfcls  22556  flimfnfcls  22564  cfilfcls  23804
  Copyright terms: Public domain W3C validator