MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fclsrest Structured version   Visualization version   GIF version

Theorem fclsrest 22626
Description: The set of cluster points in a restricted topological space. (Contributed by Mario Carneiro, 15-Oct-2015.)
Assertion
Ref Expression
fclsrest ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → ((𝐽t 𝑌) fClus (𝐹t 𝑌)) = ((𝐽 fClus 𝐹) ∩ 𝑌))

Proof of Theorem fclsrest
Dummy variables 𝑠 𝑡 𝑢 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1132 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → 𝐽 ∈ (TopOn‘𝑋))
2 filelss 22454 . . . . . . 7 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → 𝑌𝑋)
323adant1 1126 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → 𝑌𝑋)
4 resttopon 21763 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌𝑋) → (𝐽t 𝑌) ∈ (TopOn‘𝑌))
51, 3, 4syl2anc 586 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → (𝐽t 𝑌) ∈ (TopOn‘𝑌))
6 filfbas 22450 . . . . . . . 8 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋))
763ad2ant2 1130 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → 𝐹 ∈ (fBas‘𝑋))
8 simp3 1134 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → 𝑌𝐹)
9 fbncp 22441 . . . . . . 7 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑌𝐹) → ¬ (𝑋𝑌) ∈ 𝐹)
107, 8, 9syl2anc 586 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → ¬ (𝑋𝑌) ∈ 𝐹)
11 simp2 1133 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → 𝐹 ∈ (Fil‘𝑋))
12 trfil3 22490 . . . . . . 7 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝑋) → ((𝐹t 𝑌) ∈ (Fil‘𝑌) ↔ ¬ (𝑋𝑌) ∈ 𝐹))
1311, 3, 12syl2anc 586 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → ((𝐹t 𝑌) ∈ (Fil‘𝑌) ↔ ¬ (𝑋𝑌) ∈ 𝐹))
1410, 13mpbird 259 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → (𝐹t 𝑌) ∈ (Fil‘𝑌))
15 fclsopn 22616 . . . . 5 (((𝐽t 𝑌) ∈ (TopOn‘𝑌) ∧ (𝐹t 𝑌) ∈ (Fil‘𝑌)) → (𝑥 ∈ ((𝐽t 𝑌) fClus (𝐹t 𝑌)) ↔ (𝑥𝑌 ∧ ∀𝑦 ∈ (𝐽t 𝑌)(𝑥𝑦 → ∀𝑧 ∈ (𝐹t 𝑌)(𝑦𝑧) ≠ ∅))))
165, 14, 15syl2anc 586 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → (𝑥 ∈ ((𝐽t 𝑌) fClus (𝐹t 𝑌)) ↔ (𝑥𝑌 ∧ ∀𝑦 ∈ (𝐽t 𝑌)(𝑥𝑦 → ∀𝑧 ∈ (𝐹t 𝑌)(𝑦𝑧) ≠ ∅))))
17 in32 4197 . . . . . . . . . . . . . 14 ((𝑢𝑠) ∩ 𝑌) = ((𝑢𝑌) ∩ 𝑠)
18 ineq2 4182 . . . . . . . . . . . . . 14 (𝑠 = 𝑡 → ((𝑢𝑌) ∩ 𝑠) = ((𝑢𝑌) ∩ 𝑡))
1917, 18syl5eq 2868 . . . . . . . . . . . . 13 (𝑠 = 𝑡 → ((𝑢𝑠) ∩ 𝑌) = ((𝑢𝑌) ∩ 𝑡))
2019neeq1d 3075 . . . . . . . . . . . 12 (𝑠 = 𝑡 → (((𝑢𝑠) ∩ 𝑌) ≠ ∅ ↔ ((𝑢𝑌) ∩ 𝑡) ≠ ∅))
2120rspccv 3619 . . . . . . . . . . 11 (∀𝑠𝐹 ((𝑢𝑠) ∩ 𝑌) ≠ ∅ → (𝑡𝐹 → ((𝑢𝑌) ∩ 𝑡) ≠ ∅))
22 inss1 4204 . . . . . . . . . . . . 13 (𝑢𝑌) ⊆ 𝑢
23 ssrin 4209 . . . . . . . . . . . . 13 ((𝑢𝑌) ⊆ 𝑢 → ((𝑢𝑌) ∩ 𝑡) ⊆ (𝑢𝑡))
2422, 23ax-mp 5 . . . . . . . . . . . 12 ((𝑢𝑌) ∩ 𝑡) ⊆ (𝑢𝑡)
25 ssn0 4353 . . . . . . . . . . . 12 ((((𝑢𝑌) ∩ 𝑡) ⊆ (𝑢𝑡) ∧ ((𝑢𝑌) ∩ 𝑡) ≠ ∅) → (𝑢𝑡) ≠ ∅)
2624, 25mpan 688 . . . . . . . . . . 11 (((𝑢𝑌) ∩ 𝑡) ≠ ∅ → (𝑢𝑡) ≠ ∅)
2721, 26syl6 35 . . . . . . . . . 10 (∀𝑠𝐹 ((𝑢𝑠) ∩ 𝑌) ≠ ∅ → (𝑡𝐹 → (𝑢𝑡) ≠ ∅))
2827ralrimiv 3181 . . . . . . . . 9 (∀𝑠𝐹 ((𝑢𝑠) ∩ 𝑌) ≠ ∅ → ∀𝑡𝐹 (𝑢𝑡) ≠ ∅)
2911ad3antrrr 728 . . . . . . . . . . . 12 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) ∧ 𝑢𝐽) ∧ 𝑠𝐹) → 𝐹 ∈ (Fil‘𝑋))
30 simpr 487 . . . . . . . . . . . 12 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) ∧ 𝑢𝐽) ∧ 𝑠𝐹) → 𝑠𝐹)
318ad3antrrr 728 . . . . . . . . . . . 12 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) ∧ 𝑢𝐽) ∧ 𝑠𝐹) → 𝑌𝐹)
32 filin 22456 . . . . . . . . . . . 12 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑠𝐹𝑌𝐹) → (𝑠𝑌) ∈ 𝐹)
3329, 30, 31, 32syl3anc 1367 . . . . . . . . . . 11 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) ∧ 𝑢𝐽) ∧ 𝑠𝐹) → (𝑠𝑌) ∈ 𝐹)
34 ineq2 4182 . . . . . . . . . . . . . 14 (𝑡 = (𝑠𝑌) → (𝑢𝑡) = (𝑢 ∩ (𝑠𝑌)))
35 inass 4195 . . . . . . . . . . . . . 14 ((𝑢𝑠) ∩ 𝑌) = (𝑢 ∩ (𝑠𝑌))
3634, 35syl6eqr 2874 . . . . . . . . . . . . 13 (𝑡 = (𝑠𝑌) → (𝑢𝑡) = ((𝑢𝑠) ∩ 𝑌))
3736neeq1d 3075 . . . . . . . . . . . 12 (𝑡 = (𝑠𝑌) → ((𝑢𝑡) ≠ ∅ ↔ ((𝑢𝑠) ∩ 𝑌) ≠ ∅))
3837rspcv 3617 . . . . . . . . . . 11 ((𝑠𝑌) ∈ 𝐹 → (∀𝑡𝐹 (𝑢𝑡) ≠ ∅ → ((𝑢𝑠) ∩ 𝑌) ≠ ∅))
3933, 38syl 17 . . . . . . . . . 10 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) ∧ 𝑢𝐽) ∧ 𝑠𝐹) → (∀𝑡𝐹 (𝑢𝑡) ≠ ∅ → ((𝑢𝑠) ∩ 𝑌) ≠ ∅))
4039ralrimdva 3189 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) ∧ 𝑢𝐽) → (∀𝑡𝐹 (𝑢𝑡) ≠ ∅ → ∀𝑠𝐹 ((𝑢𝑠) ∩ 𝑌) ≠ ∅))
4128, 40impbid2 228 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) ∧ 𝑢𝐽) → (∀𝑠𝐹 ((𝑢𝑠) ∩ 𝑌) ≠ ∅ ↔ ∀𝑡𝐹 (𝑢𝑡) ≠ ∅))
4241imbi2d 343 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) ∧ 𝑢𝐽) → ((𝑥𝑢 → ∀𝑠𝐹 ((𝑢𝑠) ∩ 𝑌) ≠ ∅) ↔ (𝑥𝑢 → ∀𝑡𝐹 (𝑢𝑡) ≠ ∅)))
4342ralbidva 3196 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) → (∀𝑢𝐽 (𝑥𝑢 → ∀𝑠𝐹 ((𝑢𝑠) ∩ 𝑌) ≠ ∅) ↔ ∀𝑢𝐽 (𝑥𝑢 → ∀𝑡𝐹 (𝑢𝑡) ≠ ∅)))
44 vex 3497 . . . . . . . . 9 𝑢 ∈ V
4544inex1 5213 . . . . . . . 8 (𝑢𝑌) ∈ V
4645a1i 11 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) ∧ 𝑢𝐽) → (𝑢𝑌) ∈ V)
47 elrest 16695 . . . . . . . . 9 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌𝐹) → (𝑦 ∈ (𝐽t 𝑌) ↔ ∃𝑢𝐽 𝑦 = (𝑢𝑌)))
48473adant2 1127 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → (𝑦 ∈ (𝐽t 𝑌) ↔ ∃𝑢𝐽 𝑦 = (𝑢𝑌)))
4948adantr 483 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) → (𝑦 ∈ (𝐽t 𝑌) ↔ ∃𝑢𝐽 𝑦 = (𝑢𝑌)))
50 eleq2 2901 . . . . . . . . 9 (𝑦 = (𝑢𝑌) → (𝑥𝑦𝑥 ∈ (𝑢𝑌)))
51 elin 4168 . . . . . . . . . . 11 (𝑥 ∈ (𝑢𝑌) ↔ (𝑥𝑢𝑥𝑌))
5251rbaib 541 . . . . . . . . . 10 (𝑥𝑌 → (𝑥 ∈ (𝑢𝑌) ↔ 𝑥𝑢))
5352adantl 484 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) → (𝑥 ∈ (𝑢𝑌) ↔ 𝑥𝑢))
5450, 53sylan9bbr 513 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) ∧ 𝑦 = (𝑢𝑌)) → (𝑥𝑦𝑥𝑢))
55 vex 3497 . . . . . . . . . . . 12 𝑠 ∈ V
5655inex1 5213 . . . . . . . . . . 11 (𝑠𝑌) ∈ V
5756a1i 11 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) ∧ 𝑠𝐹) → (𝑠𝑌) ∈ V)
58 elrest 16695 . . . . . . . . . . . 12 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → (𝑧 ∈ (𝐹t 𝑌) ↔ ∃𝑠𝐹 𝑧 = (𝑠𝑌)))
59583adant1 1126 . . . . . . . . . . 11 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → (𝑧 ∈ (𝐹t 𝑌) ↔ ∃𝑠𝐹 𝑧 = (𝑠𝑌)))
6059adantr 483 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) → (𝑧 ∈ (𝐹t 𝑌) ↔ ∃𝑠𝐹 𝑧 = (𝑠𝑌)))
61 ineq2 4182 . . . . . . . . . . . 12 (𝑧 = (𝑠𝑌) → (𝑦𝑧) = (𝑦 ∩ (𝑠𝑌)))
6261adantl 484 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) ∧ 𝑧 = (𝑠𝑌)) → (𝑦𝑧) = (𝑦 ∩ (𝑠𝑌)))
6362neeq1d 3075 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) ∧ 𝑧 = (𝑠𝑌)) → ((𝑦𝑧) ≠ ∅ ↔ (𝑦 ∩ (𝑠𝑌)) ≠ ∅))
6457, 60, 63ralxfr2d 5302 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) → (∀𝑧 ∈ (𝐹t 𝑌)(𝑦𝑧) ≠ ∅ ↔ ∀𝑠𝐹 (𝑦 ∩ (𝑠𝑌)) ≠ ∅))
65 ineq1 4180 . . . . . . . . . . . 12 (𝑦 = (𝑢𝑌) → (𝑦 ∩ (𝑠𝑌)) = ((𝑢𝑌) ∩ (𝑠𝑌)))
66 inindir 4203 . . . . . . . . . . . 12 ((𝑢𝑠) ∩ 𝑌) = ((𝑢𝑌) ∩ (𝑠𝑌))
6765, 66syl6eqr 2874 . . . . . . . . . . 11 (𝑦 = (𝑢𝑌) → (𝑦 ∩ (𝑠𝑌)) = ((𝑢𝑠) ∩ 𝑌))
6867neeq1d 3075 . . . . . . . . . 10 (𝑦 = (𝑢𝑌) → ((𝑦 ∩ (𝑠𝑌)) ≠ ∅ ↔ ((𝑢𝑠) ∩ 𝑌) ≠ ∅))
6968ralbidv 3197 . . . . . . . . 9 (𝑦 = (𝑢𝑌) → (∀𝑠𝐹 (𝑦 ∩ (𝑠𝑌)) ≠ ∅ ↔ ∀𝑠𝐹 ((𝑢𝑠) ∩ 𝑌) ≠ ∅))
7064, 69sylan9bb 512 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) ∧ 𝑦 = (𝑢𝑌)) → (∀𝑧 ∈ (𝐹t 𝑌)(𝑦𝑧) ≠ ∅ ↔ ∀𝑠𝐹 ((𝑢𝑠) ∩ 𝑌) ≠ ∅))
7154, 70imbi12d 347 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) ∧ 𝑦 = (𝑢𝑌)) → ((𝑥𝑦 → ∀𝑧 ∈ (𝐹t 𝑌)(𝑦𝑧) ≠ ∅) ↔ (𝑥𝑢 → ∀𝑠𝐹 ((𝑢𝑠) ∩ 𝑌) ≠ ∅)))
7246, 49, 71ralxfr2d 5302 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) → (∀𝑦 ∈ (𝐽t 𝑌)(𝑥𝑦 → ∀𝑧 ∈ (𝐹t 𝑌)(𝑦𝑧) ≠ ∅) ↔ ∀𝑢𝐽 (𝑥𝑢 → ∀𝑠𝐹 ((𝑢𝑠) ∩ 𝑌) ≠ ∅)))
731adantr 483 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) → 𝐽 ∈ (TopOn‘𝑋))
7411adantr 483 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) → 𝐹 ∈ (Fil‘𝑋))
753sselda 3966 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) → 𝑥𝑋)
76 fclsopn 22616 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝑥 ∈ (𝐽 fClus 𝐹) ↔ (𝑥𝑋 ∧ ∀𝑢𝐽 (𝑥𝑢 → ∀𝑡𝐹 (𝑢𝑡) ≠ ∅))))
7776baibd 542 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥𝑋) → (𝑥 ∈ (𝐽 fClus 𝐹) ↔ ∀𝑢𝐽 (𝑥𝑢 → ∀𝑡𝐹 (𝑢𝑡) ≠ ∅)))
7873, 74, 75, 77syl21anc 835 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) → (𝑥 ∈ (𝐽 fClus 𝐹) ↔ ∀𝑢𝐽 (𝑥𝑢 → ∀𝑡𝐹 (𝑢𝑡) ≠ ∅)))
7943, 72, 783bitr4d 313 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) → (∀𝑦 ∈ (𝐽t 𝑌)(𝑥𝑦 → ∀𝑧 ∈ (𝐹t 𝑌)(𝑦𝑧) ≠ ∅) ↔ 𝑥 ∈ (𝐽 fClus 𝐹)))
8079pm5.32da 581 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → ((𝑥𝑌 ∧ ∀𝑦 ∈ (𝐽t 𝑌)(𝑥𝑦 → ∀𝑧 ∈ (𝐹t 𝑌)(𝑦𝑧) ≠ ∅)) ↔ (𝑥𝑌𝑥 ∈ (𝐽 fClus 𝐹))))
8116, 80bitrd 281 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → (𝑥 ∈ ((𝐽t 𝑌) fClus (𝐹t 𝑌)) ↔ (𝑥𝑌𝑥 ∈ (𝐽 fClus 𝐹))))
82 elin 4168 . . . 4 (𝑥 ∈ ((𝐽 fClus 𝐹) ∩ 𝑌) ↔ (𝑥 ∈ (𝐽 fClus 𝐹) ∧ 𝑥𝑌))
8382biancomi 465 . . 3 (𝑥 ∈ ((𝐽 fClus 𝐹) ∩ 𝑌) ↔ (𝑥𝑌𝑥 ∈ (𝐽 fClus 𝐹)))
8481, 83syl6bbr 291 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → (𝑥 ∈ ((𝐽t 𝑌) fClus (𝐹t 𝑌)) ↔ 𝑥 ∈ ((𝐽 fClus 𝐹) ∩ 𝑌)))
8584eqrdv 2819 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → ((𝐽t 𝑌) fClus (𝐹t 𝑌)) = ((𝐽 fClus 𝐹) ∩ 𝑌))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wne 3016  wral 3138  wrex 3139  Vcvv 3494  cdif 3932  cin 3934  wss 3935  c0 4290  cfv 6349  (class class class)co 7150  t crest 16688  fBascfbas 20527  TopOnctopon 21512  Filcfil 22447   fClus cfcls 22538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-iin 4914  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-oadd 8100  df-er 8283  df-en 8504  df-fin 8507  df-fi 8869  df-rest 16690  df-topgen 16711  df-fbas 20536  df-fg 20537  df-top 21496  df-topon 21513  df-bases 21548  df-cld 21621  df-ntr 21622  df-cls 21623  df-fil 22448  df-fcls 22543
This theorem is referenced by:  relcmpcmet  23915
  Copyright terms: Public domain W3C validator